
 A Compact Cell Structure
for Scientific Visualization

W.J. Schroeder
Boris Yamrom

GE Corporate Research & Development
Schenectady, NY 12301

Abstract

Well designed data structures and access methods are vital
to developing efficient visualization algorithms. The cell struc-
ture is a compact, general data structure for representing n-
dimensional topological constructs such as unstructured grids,
polygonal, or triangle strip representations. The cell structure
also provides constant time access methods for a wide variety of
visualization algorithms. This paper describes the representa-
tion, access methods, and implementation of the cell structure.
Sample algorithms such as decimation, triangle strip generation,
and streamline propagation are used to illustrate its application.

1.0 Introduction

The bulk of the visualization literature is oriented
towards algorithms and graphical representational
schemes[1],[2],[3]. Data structures, if described at all, are
often presented superficially. However it is only with well
designed combinations of both algorithm and data struc-
ture that useful visualization techniques can be created[4].

Visualization data tends to have some particular char-
acteristics: the data size is large and the data type is varied.
Large data are simply the result of the basic goal of visual-
ization - to transform large data into more comprehensible
forms. The data is varied because visualization techniques
are general. An iso-surface generation algorithm[5],[5] is
just as useful applied to medical data as it is to financial
visualization. Hence visual data structures must be both
compact (i.e., small memory requirement) and general
(i.e., represent a wide variety of data).

The cell structure is a compact and general data struc-
ture for representing cell topology. Cell topology consists
of points plus and a particular ordering of points (i.e., a
cell). One or more cells may share a given point as well as
other topological features such as edges and faces. The
most important feature of the cell structure is that it repre-
sents adjacency, or topological neighborhood information,
with minimal memory requirement. The cell structure has
also been designed with access methods that support a
wide variety of visualization algorithms.

A number of similar data structures have been previ-
ously developed[7],[8]. The simplest structures are varia-
tions of display lists: lists of points, and polygon/element/
cell connectivity. While these data structures are com-
pact, performing operations requiring adjacency informa-
tion results in algorithms of time complexity since
searching is required. A variation of this data structure
uses a supplemental list to represent adjacency informa-
tion[9],[10]. For each cell of particular type and dimen-
sion (e.g., hexahedron with six faces), a list of neighbors
is maintained (e.g., the six face neighbors of the hexahe-
dron). This structure is particularly useful when the cell
type and topology is the same for all cells. However,
when mixed cell type and topology is required, the struc-
ture becomes unwieldy. Also, in order to build this struc-
ture, an search is initially required. More
elaborate data structures include the hierarchical winged
edge[11] and radial edge[12] structures. Hierarchical
structures explicitly represent topology in terms of a hier-
archy of increasing topological dimension: vertices,
edges, faces, regions. Although extremely powerful con-
structs, fully elaborated hierarchical structures require
large amounts of memory than the simpler ones just
described.

The cell structure is a variation of the display list
structure with additional hierarchical information. It can
simultaneously represent cells of mixed topology, and
provides constant time access to adjacency information.
Moreover, the cell structure is more compact than hierar-
chical structures since its hierarchical information is
implicitly represented.

2.0 Cell Structure

In this section the mathematical basis, representation,
access methods, and implementation of the cell structure
is described.

2.1 Mathematical Basis

The cell structure is based on the topological con-
struct called a cell, . A cell is an ordered sequence of

O n
2()

O n
2()

Ci

points with where is a set
of n-dimensional points. The particular meaning of the
sequence of points, or cell topology, is determined by the
typeof cell. The number of pointsn defining the cell is the
size of the cell.

Examples of cells (Figure 1) include points (0D
topology), lines (1D topology), polygons and triangle
strips (2D topology), and unstructured grid elements such
as tetrahedron, hexahedron, pyramids, and triangular
prisms (3D topology). Higher dimension cells are also
possible, such as n-dimensional simplices.

A key concept of the cell structure is the “use” of a
point by a cell. A cell “uses” a point when .
Hence the “use set” is the collection of all cells
using :

2.2 Representation

The cell structure expresses the relationship between
pointsP, cellsC, and use setsU. The representation of this
information may take a variety of forms, but the prefer-
ence is for a data structure that is simple, compact, and
can be accessed in constant time. It is also desirable that
the structure can be directly retrieved from or written to
storage. That is, the use of pointers, or memory locations,
is not directly evident in the data structure.

The implementation of the cell structure consists of
four dynamic arrays (Figure 2).A dynamic array is simply
an array (e.g., a contiguous, addressable memory space)
that grows dynamically to accomodate new data. The ele-
ments of the array are addressed with a unique, non-nega-
tive integer id.

The first array represents a list of pointsx-y-z coordi-
nates whose id is the array access id. The second array
represents the cells: the size, type, and a list of point ids
that define the cell. In the third dynamic array the use
arrays for each point are expressed. Each use array con-
sists of the number of cells using a particular point. That
is, at use array positioni the cells that use pointi are
listed. The final dynamic array provides storage and con-
sists of id types in no particular order. This array is not
required, but it provides a contiguous pool of memory
from which the cell arrays and use arrays construct their

lists. Using the storage array reduces memory fragmenta-
tion greatly, and reduces the number of system calls to
acquire memory.

A key feature of the cell structure is that it implicitly
represents intermediate topology between the cell (n-
dimensional) and the defining points (0-dimensional). As
a result, supplemental information is required to address
the layers of intermediate cell topology. If a poly-
gon is represented as an ordered sequence of points, then
pairs of adjacent points represent polygon edges. A more
complex topology is a pyramid. The list shown in Figure 3
allows direct access to the five faces of the pyramid. The
first number represents the number of points defining the
face, followed by a list of ordered indices into the cells
point list (1-offset). This implicit representation of topol-
ogy is the reason why the cell structure can compactly
represent adjacency information.

Other information can represent the relationship
between the cell geometry and topology. A typical exam-
ple is when traversing cells, such as streamline tracking.

Ci p1 p2 … pn, , ,{ }= pi P∈ P

Figure 1. Some example cell types.

vertex polyline triangle polygon

triangle strip tetrahedron hexahedron

Ci pi pi Ci∈
U pi()

pi

U pi() Ci :pi Ci }∈{=

type
npts

pts_list

x-y-z

x-y-z
x-y-z

Figure 2. Cell representation.

Cell

Points

Uses

Point- Cells Storage Uses

type
npts

pts_list

type
npts

pts_list

id
id
id

id

ncells
cell_list
ncells

cell_list

ncells
cell_list

Topology

Implementation

n 2–()

faces = {4, 1,2,3,4,
3, 1,5,2,0,
3, 2,5,3,0,
3, 3,5,4,0,
3, 4,5,1,0}

5

2

1

3

4

Figure 3. Accessing implicit topology

Often the traversal is computed using parametric coordi-
nates, and when a boundary is encountered (parametric
coordinate value), it is necessary to obtain the corre-
sponding topology (e.g., face or edge).

Another important capability of the cell structure is
the ability to simultaneously represent cells of different
type. For example, Figure 5 shows an unstructured grid
consisting of hexadra, tetraheda, pyramids, triangular
prisms (3D topology), polygons (2D topology), and lines
(1D topology).

2.3 Access Methods

There are three categories of methods for manipulat-
ing the cell structure:primitive methods, topological
methods, andadjacency methods. A description of these
methods follow.

2.3.1 Primitive Methods
Primitive methods are used for creating, destroying,

modifying, and traversing the cell structure. Sample meth-
ods include:

Cells = initialize ()
Create an empty cell structure and return a pointer
Cellsto the structure. Optional arguments for spec-
ifying initial storage size are possible.

create_point (Cells, pt_id, x)
Given a point id and x-y-z coordinate, create a
point in theCells structure.

create_cell (Cells, cell_id, type, npts, pts)
Given a cell id, a cell type, the number of points,
and the point ids defining the cell, create a cell in
theCells structure.

build_uses ()
Using the current cells and points, build the use
lists for theCells structure.

npts = get_number_points (Cells)
Return the number of points in the structure.

ncells = get_numer_cells (Cells)
Return the number of cells in the structure.

destroy (Cells)
Release the Cellsstructure back to system mem-
ory.

Building the cell structure consists of creating points
and cells, followed by the building the use lists. This pro-
cess is of linear time complexity. For each cell in the
structure, a traversal of the cell’s point list is made. Then
for each point in the cell’s point list, the corresponding use
list is updated. Once all cells are visited the data structure
is complete. In some applications thebuild_uses() method
need not be executed. Then the structure is basically a dis-
play list.

2.3.2 Topological Methods
Topological methods provide access to the topology

of the cell. Some of these methods are as follows.

get_cell_pts (Cells, cell_id, pts, npts)
Return a list of point ids that define the given cell.

get_pt_cells (Cells, pt_id, cells, ncells)
Return a list of cell ids that use the specified point.

These operators return information directly from the
cell structure. It is also possible to return other topological
information using supplemental information associated
with the type of the topology. For example, if the cell type
is a pyramid, then accessing the faces of the pyramid can
be implemented using the table of Figure 3 and the opera-
tor:

get_cell_face_pts (Cells, cell_id, face_id, npts, pts)
Return a list of point ids that define the specified
face of the given cell.

2.3.3 Adjacency Methods
Adjacency methods are used to obtain information

about the neighbors of a cell. A neighbor of a particular
cell is simply a cell that shares one or more points in
common with . Examples of these methods follow.

get_cell_pt_nbr (Cells, cell_id, pt_id, nbrs, nnbrs)
Given a point and cell, return a list of neighboring
cells that use the point.

get_cell_feature_nbr (Cells,cell_id,pts,npts,nbr,nnbrs)
Given a list of points from a cell, return a list of
neighboring cells that each use all the specified
points.

Theget_cell_feature_nbr() method is useful for
extracting adjacency information across topological fea-
tures. For example, if the feature is specified by two points
defining an edge, this method returns edge neighbors. Or,
if the points define a face, this method returns a face
neighbor.

The adjacency operators are simple set operations.
For a particular cell and point list
with , where typically corrsponds to a topological
feature of the cell, the result of theget_cell_feature_nbrs()
method is the adjacency set . The adjacency set is
simply the intersection of the use sets for each point,
excluding the cell

The adjacency set implicitly represents a variety of
useful information. In a manifold object represented by a
polyhedra, for example, each polygon must have exactly
one edge neighbor for each of its edges. Edges that have
no neighbors are boundary edges; edges that have more
than one edge neighbor represent non-manifold topology.

1±

C
C

C P p1 p2 … pn, , ,()=
P P⊂ P

A C P,()

C

A C P,() U pi()
i 1=

n

∩
 C–=

Volume data sets that consist of 3D cells (e.g., unstruc-
tured grids) are topologically consistent only if for each
cell there is exactly one face neighbor for each face. Faces
that have no neighbors are on the boundary of the volume.
More than one face neighbor implies that the neighbors
are self-intersecting.

The construction of an adjacency set is of time
and space complexity provided that a constant bound can
be placed on the number of uses of a point. Examining
Equation 2 above, if , and

 is independent ofnpts, then the time complex-
ity of the set operations are bounded by a fixed constant. It
is possible to design pathological cases where a particular
point is used by every cell, but in application such situa-
tions do not occur. Typically a point is used by 5-6 trian-
gles in a triangle mesh, or eight hexahedra in a hexahedral
mesh.

3.0 Algorithms

A variety of algorithms have been implemented using
the cell structure. In the following subsections a few are
expressed in pseudo-code using the cell access methods
described earlier. The pseudo-code examples are simpli-
fied to demonstrate the use of the data structure.

3.1 Streamlne Propagation

A common vector field visualization technique is to
generate streamlines. Streamlines are the path that a mass-
less particle takes when moving through the vector field.
Typical examples include visualizing fluid flow.

The cell structure provides a convenient structure to
propagate the streamline through a computational grid
(Figure 6). Computational grids are typically composed of
many thousands or perhaps millions of cells in which
numerical computation is carried out. The streamline
traverses many of these cells, and the propagation algo-
rithm requires tracking the streamline from cell to cell.

determine initial cellcell, positionx, and velocityv;
while (insideCells) {

;
map to cell coordinates(r,s,t);
if ((r,s,t) outside cell){

find cell facef that streamline passed through;
get_cell_face_nbrs (Cells, cell, f, nbrs, nnbrs);
if (nnbrs < 1) outsideCells;
else cell = nbrs[0];

}
evaluate velocity incell at (r,s,t);

;
}

3.2 Decimation

The goal of the decimation algorithm is to reduce the
number of polygons in a polygonal mesh, while maintain-
ing the original topology of the mesh. Schroeder et al[15]
have implemented this algorithm using the cell structure
and have achieved reductions of greater than 90% on max-

imum model sizes of 1.7 million triangles. Figure 7 shows
a 90% decimated model of a human face.

The algorithm repeatedly visits all non-decimated
vertices, gathering the polygons surrounding each vertex
into a list. These polygons are than evaluated against a
local planarity (or edge) condition. If the condition is sat-
isfied, then the vertex and using polygons are deleted, and
the resulting “hole” is triangulated. The process repeats
until an appropriate number of vertices are eliminated.

(pseudo-code)

3.3 Feature Normals

Realistic rendering of polygonal representations
depends upon using vertex normals to smooth the transi-
tion from one polygon to the next. Frequently polygons
are generated without normals, and techniques must be
used to generate the normals from the polygon connectiv-
ity.

One naive approach to normal generation is to com-
pute a vertex normal by averaging the normals of poly-
gons using the vertex. This works well in situations where
the dihedral angles between polygons is small, and when
the polygons are all ordered consistently. In many cases,
e.g., a cube, the angles between polygons are quite large,
resulting in images that appear less than realistic.

In the algorithm that follows, normals are generated
on a polygonal mesh that may or may not be consistently
ordered. In addition, polygons whose dihedral angle is
greater than a specified feature angle are separated along
their common edges (Figure 8).

for eachcell in Cells { /*make order consistent*/
if (not visitedcell) order (cell); /*recursively reorder*/

}
for each cell in Cells { /*compute cell normals*/

get_cell_pts (Cells, cell, pts, npts);
generate polygon normal;

}
for each point p in Cells { /*split feature edges*/

if (not visited p) split(p); /*recursively split*/
}
for each point p in Cells{

get_pt_cells (Cells, p, cells);
determine average normal based on using cells;

}

order (cell) {/* recursive reorder function */
mark cell visited;
get_cell_pts (Cells, cell, pts, npts);
for each edge (p1,p2) in cell pts {

get_cell_edge_nbrs (Cells, cell, p1, p2, nbrs, nnbrs);
if (nnbrs > 0 && nbrs[i] not visited) {

if (nbrs[i] edge order not (p2,p1) reverse(nbrs[i]);
order (nbrs[i]); /*recursive call*/

}}}

split (p) {/* recursive edge splitting function */
mark p visited;
get_pt_cells (Cells, pt, cells, ncells);
for each cell cells[i] {

get_cell_pts (Cells, cells[i], pts, npts);

O n()

n MAX_USE≤ npts«
MAX_USE

xi 1+ xi vi t∆⋅+=
xi 1+

vi
xi xi 1+=

if (nnbrs == 0) {
extrude edge to create triangle strip;

}
}

}
}

4.0 Conclusion

The cell structure is a compact, general data structure
that has been used to implement a variety of visualization
algorithms. The cell structure is particular useful when
cell adjacency information is required. Such operations
requireO(1) time and space complexity. Hence the cell
structure can be used to implement algorithms ofO(n)
time complexity.

As compared to more complex data structures, the
cell structure is limited in two important ways. First, the
cell structure does not represent “ordering” information.
That is, given a topological feature such as an edge, the
particular order of using faces around the edge. Second,
because intermediate topology is implicit, certain types of
topology requiring explicit information cannot be properly
represented. Figure 4 is one such example. Here two cur-
vilinear triangles share common vertices, put not edges. In
such situations more explicit hierarchical structures, such
as the winged edge or radial edge structures, are appropri-
ate. It is possible to address these limitations by perform-
ing local geometric processing to order usage, or to add
conditional hierarchial information to the cell structure.

References
[1] B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization

in Scientific Computing.Computer Graphics, 21(6), Nov. 1987.
[2] N. M. Patrikalakis, editor.Scientific Visualization of Physical Phe-

nomena. Springer-Verlag. Tokyo 1991.
[3] G. M. Nielson and B. Shriver, editors.Visualization in Scientific

Computing. IEEE Computer Society Press. Los Alamitos, CA.
1990.

[4] A. V. Aho and J. E. Hopcroft and J. D. Ullman.Data Structures
and Algorithms. Addison-Wesley Publishing Company. Reading,
MA. 1983.

[5] W. E. Lorensen and H. Cline. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.Computer Graphics,
21(4):163-169, July, 1987.

[6] G. Wyvill and C. McPheeters and B. Wyville. Data Structures for
Soft Objects.Visual Computer. 2(4):227-234

[7] A. Paoluzzi and F. Bernardini and C. Cattani and V. Ferrucci.
Dimension-Independent Modeling with Simplicial Complexes.
ACM Transactions on Graphics. 12(1), January, 1993.

[8] E. Brisson. Representing geometric structures in d-dimensions:
Topology and order.ACM Symposium on Computational Geome-
try. ACM Press, New York,1989.

[9] R. Haimes and M. Giles. VISUAL3: Interactive Unsteady
Unstructured 3D Visualization. AIAA Report No. AIAA-91-
0794. January, 1991.

[10] L. Gelberg, D. Kamins, D. Parker, and J. Stacks. Visualization
Techniques for Structured and Unstructured Scientific Data.SIG-
GRAPH `90 Course Notes for State of the Art Data Visualization.
August, 1990.

Figure 4. Curvilinear triangles

for each cell edge (p,pts[i])
get_cell_edge_nbrs (Cells,cells[i],p,pts[i],nbrs, nnbrs);{
if (nnbrs > 0) && (nnbrs > 1 or

dihedral angle > feature angle) {
create new point pnew;
replace p (in cells[i]) with pnew;

} }
if (not visited pts[i]) split (pts[i]);

}}

3.4 Triangle Strip Generation

Triangle strips are compact representations of adja-
cent triangles. Most rendering hardware supports triangle
strips directly as a high-performance graphics primitive.
Unfortunately triangle strips are not typically generated in
visualization algorithms. Instead, as this simple algorithm
illustrates, triangle strips can be easily generated from tri-
angles (or polygons) using the cell structure.

A typical application of this algorithm is shown in
Figure 9. Here the original data of x polygons is stripped
to produce y strips. The modest length of the strips is mis-
leading: the result is a six-fold increase in rendering
speed.

initialize list of triangle strips strips;
for each cell in cell list Cells {

if cell not visited {
mark cell visited;
start new triangle strip strip;
get_cell_pts (Cells, cell, pts, npts);
for each cell edge p1,p2 { /* assumed triangles */

get_cell_edge_nbrs (Cells, cell, p1, p2, nbrs, nnbrs);
if (nnbrs>0 && (nbr=nbrs[0]) not visited) break;{

}/* start growing strip */
while (nbr != NULL) {

add nbr to strip;
mark nbr visited;
get_cell_edge_nbrs (Cells, nbr, p1, p2, nbrs, nnbrs);
if (nnbrs < 1) nbr = NULL else nbr=nbrs[0];

}
add strip to strips;

}
}

3.5 Extrusion

A simple geometric construct is an extrusion or
sweep. Here it is assumed that the starting point for this
operation is a collection of points, lines, and polygons,
and that the surface is swept along some path to create a
“volume”.

The use of the cell structure in this algorithm is to
identify boundary edges, i.e., polygon edges that are used
by only a single polygon. These edges when swept create
the sides of the resulting polyhedron (Figure 10).

for eachcell in cell list Cells {
if cell type is POINT {

extrude point to create line;
} else if cell type is LINE {

extrude line to create triangle strip;
} else {

for each edge (p1,p2) in cell {
get_cell_edge_nbrs(Cells, cell, p1, p2, nbrs,nnbrs);

Figure 5. Unstructured grid representation. Figure 6. Stream tube propagation.

Figure 7. 90% decimated polygonal mesh, triangles
shrunk to show shape.

Figure 8. Feature normal generation from decimated
geometry of Figure 7.

Figure 9. Triangle strip generation from original range
data. Every other triangle strip is turned off.

Figure 10. Extrusion (along surface normals) of surface
from Figure 8 to create closed geometry.

