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Figure 1: A mapping between 3D patch and 2D planar
domain. Image taken from [1].

1 Introduction

Mesh parameterization is defined as mapping a 3D
surface mesh onto a suitable target domain. Although
there is no restriction on mesh topology or target domain,
in general the parameterization problem is formulated
as : given a 3D triangulated patchM, we want to find
a piecewise linear mappingψ betweenM and a planar
domainU ∈ R2 (See Figure 1).

Parameterization has lots of applications in computer
graphics such as texture mapping, remeshing and morph-
ing. Texture mapping a 2D image onto a 3D mesh would
previously cost lots of efforts and time for an experienced
modeler to tweak theu,v texture coordinates of the mesh.
By parameterizing the mesh onto a rectangular 2D do-
main, this becomes an easy task of mapping a 2D image
onto an rectangle. Parameterizing a 3D mesh would also
benefits the task of remeshing since it will be easier to re-
distribute the samples and to perform re-triangulation on
2D domain. Moreover, by transforming the 3D irregu-
lar mesh data into 2D regular resampled data [9], a good
number of well-established algorithms which works gen-

erally on 2D regular grids could then also be effectively
performed on the mesh, like JPEG compression.

There are roughly two research directions in parameter-
ization, planar and non planar. The planar parameteriza-
tion focuses on minimizing the specific stretching when
mapping the 3D patch onto the 2D planar domain. The
usual process of these methods is first defining an error
metric which measure a specific error caused by the map-
ping. It then formulates the mapping as the energy min-
imization using the error metric and solves the system to
obtain results in parameter domain.

The non-planar parameterization tries to find parame-
terization on the domain which is topologically equivalent
to the mesh. These methods in general focus on construct-
ing a target domain suitable for building the parameteri-
zation for the whole mesh globally.

2 Overview

2.1 Planar

Reseach works in planar parameterization deal with the
problem of mapping between disk-like patch and 2D pla-
nar domain.The following section gives a high-level in-
troduction to them.

2.1.1 Discrete Harmonic Map/Conformal Map

The early work done by Eck et al[2] finds a piecec-wise
linear approximation of the harmonic map by fixing the
boundary vertices and minimizing the spring harmonic
energy. The energy could be expressed in the form of :
E = 1

2 ∑i, j∈Edgeswi j (ui −u j)2

Whereui ,u j are the mapping results in parameter domain,
andwi j is the spring weighting constant defined over each
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edge(i,k) using properties of original mesh (See section 3
for more detailed explanation). This configuration could
be visualized as attaching a spring with different constant
on each edge, and then stretching the boundary points to
fixed positions. The resulting harmonic map is the mini-
mizer of this spring energy. The minimum could be found
at the critical point of function which is equal to solving a
linear system defined as the zero gradient of the function,

Although it’s not explicitly mentioned in the paper, the
form of the energy is the same as Dirichlet energy for tri-
angle mapping derived by Pinkall et al [16]. In Desbrun et
al[1], the same energy is also used for finding the discrete
conformal map(DCP) best preserving the conformality. In
fact, given the same fixed boundary constraints, the map-
ping derived from DCP is the same as that from DHP.

2.1.2 Shape Preserving/Mean Value

A drawback in DCP/DHP is that thewi j weights are de-
fined by the cotangent function using angles from each
edge’s adjacent triangles. Thus if there exist obtuse trian-
gles in the source triangulation, the value of these weights
might be negative. This would then cause the mapping of
a vertex to be outside its one-ring neighborhood in param-
eter domain, which is called the invalid embedding.

To deal with this problem, the method proposed by
Floater et al[3] utilizes the fact that the form of the vertex
coordinates in parameter domain could be written as the
weighted combination of each vertex’s one-ring neighbor-
hood. Thus if all of the weights are defined to be positive
then the mapping of each vertex would always be inside
its one-ring, and thus a valid embedding. In Floater et
al[3], the vertex and its one-ring are first mapped to a
temporary 2D domain using the geodesic polar map. A
convex triangle in the one-ring which includes the vertex
could then be found in the 2D domain and the specific
weights are computed using the area defined by the trian-
gle and the vertex.

Another method by Floater et al[7] exploits the fact that
harmonic functions satisfy the mean value theorem. The
theorem could be seen as that for each point in the param-
eter domain, its harmonic function is equal to the average
of the parameter values on a small circle centered at that
point. The mapping is thus found using this fact to define
the appropriate weights. The algebraic derivation by the
author shows that these weights are independent of the

radius of that circle, and could be expressed by the tan-
gent functions using half-angles from adjacent triangles
and the length of the edge. Because these tangent weights
are always positive ( since all half- angles of any triangles
will be less than 90 degree ), this method always produces
a valid embedding for the mapping.

2.1.3 Discrete Authalic Map

In the recent work of Desbrun et al[1], they explore
the Euler characteristic, which when defined on the
Reimann manifold (differentiable manifold) could also be
expressed as the integral of the Gaussian curvature. In-
spired by this connection, the author extends the idea to
the discrete manifold based on the fact that the sum of tip
angles surrounding each vertex could be used to approx-
imate Gaussian curvature in discrete case. The parame-
terization based on this metric could then be derived as
the gradient of each tip angle with respect to its associ-
ated vertex. The author derives the discrete case of this
angle gradient and defines the energy as Chi eneregy. The
mapping resulted from minimization of Chi energy has
the property of preserving the area among each vertex’s
one-ring neighborhood as much as possible. This prop-
erty could be seen as the dual counterpart to that of DCP,
which preserves the angle during mapping.

2.1.4 Discrete Natural Conformal Map

In contrast to the previous methods, which need to fix the
boundary vertices in parameter domain, natural confor-
mal map imposes the constraints on both internal vertices
and boundary vertices and computes the parameterization
by solving the optimization for both of them. The re-
sulting parameterization has the boundary vertices also
determined by the optimization, thus the natural bound-
ary. The method is first proposed by Hormann et al[4] by
minimizing the MIPS energy defined as the function of
Dirichlet energy over the area in parameter domain. Al-
though the resulting map preserves the conformality as
much as possible, the defined energy is non-linear, which
takes much more time to find the minimum than previous
fixed-boundary methods.

To amend this drawback, Levy et al[6] and Desbrun
et al[1] both propose an alternative to model the confor-
mal energy minimization as a more tractable problem.
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Although it is shown in Floater et al[15] and David et
al[14] that these two methods are theoretically equiva-
lent, their derivations do not form the same linear sys-
tem. In Levy et al[6], inspired by Cauchy-Riemann equa-
tion, the method defines the metric to measure the viola-
tion of the equation and forms a linear least square sys-
tem by summing up the energy for each triangle. On the
other hand, Desbrun et al[1] derives the usual Dirichlet
energy minimization for internal vertices, but also adds
natural boundary constraints on boundary vertices. Be-
cause these boundary constraints include the area of trian-
gle on the parameter domain, the resulting linear system
now could not be solved independently foru,v parame-
ters and thus is roughly 2 times as large as the system un-
der fixed-boundary constraints. Although both methods
are much faster than MIPS[4] due to the quadratic energy,
they both have the drawback that folded triangles would
now be possible to occur in parameter domain for obtuse
triangles in original mesh.

2.2 Non-planar

While planar parameterization only focus on parameteri-
zation between a disk-like patch and a planar domain, the
goal of non-planar parameterization is to generate a pa-
rameterization on a mesh of arbitrary topology at once.
The desired properties for non-planar parameterization
are to be globally smooth, applicable to arbitrary topol-
ogy, and fast to solve. The methods differ mostly in their
construction for the base domain at which the parameter-
ization will be performed.

2.2.1 Voronoi Tiling

Eck and co-workers [2] parition the mesh into Voronoi
tiles and build the Delaunay triangulation on it to con-
struct the base domain. Discrete Harmonic Map is then
computed for each triangular base domain. The result-
ing parameterization could then be used for resampling
to generate multi-resolution models or to perform other
mesh operations like mesh-compression and mesh editing
in a simpler way.

2.2.2 MAPS

Instead of partition the mesh to find respective parameter-
ization, Lee and co-workers [8] utilize the mesh simplifi-
cation algorithm as the intermediate method for construt-
ing based domain. While progressively simplifying the
mesh, the method also keeps track of the barycentric co-
ordinates of the removed vertices with respect to its one-
ring neighbors. Thus when simplification is complete, the
parameterization of the original mesh is constructed as the
linear combination of the base domain vertices. Remesh-
ing is then operated using modified Loop subdivision on
the parameter domain. Although by parameterizing on the
simplified mesh, the method works for mesh of arbitrary
topology, it fails to produce a smooth parameterization
across the base domain triangles and thus needs to apply
additional smoothing operation during remeshing.

Motivated by constructing a globally smooth paramter-
ization, Khodakovsky and co-workers [13] use a similar
method for constructing the base domain patches using
simplification. However, instead of directly fixing the pa-
rameter values for vertices on patch boundary, the method
fixes only the corner vertiex parameters in the base do-
main patches and solves parameterization for all other
vertices in original mesh. This parameterization could
be formulated and obtained using any existing metric to
minimize the distortion. One difficulty that rises is that
some of a vertex’s one-ring neighbors might lie in dif-
ferent base domain patch, which makes the formulation
useless if the one-ring of a vertex across different patches.
To overcome this difficulty, a transition function is used
to transform the barycentric coordinate in one patch with
respect to a neighboring patch. Thus each vertex and its
one-ring could be expressed in the parameter domain of
the same patch, regardless of the patches they belong to.
Because the transition function is defined to be linear, it
won’t change the linear nature of the formulation. There-
fore a large linear system could then be defined over all
mesh vertices, and the resulting global parameterization
is obtained by solving the system.

2.2.3 Mesh Cut

Unlike the methods such as Voronoi tiling and MAPS,
which need to construct a topologically equivalent base
domain for the mesh, mesh cut method tends to find a
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Figure 2: Angles for discrete conformal map, discrete au-
thalic map, and mean value coordinates.

good path to cut the mesh open into a patch, and the re-
sulting patch could then be directly parameterized using
planar methods. Although this method tries to minimize
the distortion of parameterizing the whole mesh by find-
ing a good cut, it also introduces discontinuity across the
cutting path. In the recent work by Gu et al[9], a mesh of
arbitrary genus is cut into a disk-like patch, and the result-
ing parameterization is regularly resampled into an image
to utilize compression and remeshing schemes. Another
method proposed by Sheffer et al[10] finds a cut through
high curvature vertices of the mesh to form a parameteri-
zation for better texture mapping result, reducing the dis-
tortion due to flattening the mesh.

3 Comparison of Different Metrics

Having introduced a few different metrics for parameter-
ization, the following section gives a more detailed look
into some widely used metrics and their properties in ap-
plications.

3.1 Definition

Because the parameterization based on the metrics
introduced in this section could all be obtained by solving
a specific linear system form, we could express the linear
system in general as :

∑
j∈N(i)

wi j |ui −uj |= 0

Whereui ,uj are vertex coordinates we want to find in pa-
rameter domain andwi j is the weight defined by differ-
ent metrics using properties on original mesh. Until fur-
ther specified, these notations would be used in the sec-
tion. Based on the metric used, the resulting linear system
would vary and thus theu,v coordinates for each vertex
in the parameter domain would also change accordingly.
Therefore the formulation of these metrics differ in how
their weights are defined.

3.2 Discrete Conformal Map(DCP)

Introduced by Eck et al[2], and Desbrun et al[1], this
metric minimizes the Dirichlet energy and is written in
the form of :

EA = ∑
edges(i, j)

cotαi j |ui −uj |2

Whereαi j and βi j are corresponding angles in original
mesh, andui ,uj are vertex coordinates in parameter
domain. See Figure 2.
Thus its critical point could be derived as :

∂EA

∂ui
= ∑

j∈N(i)
(cotαi j +cotβi j )|ui −uj |= 0

DCP could be seen as an angle preserving mapping which
minimizes the angle distortion for the interior vertices.
The resulting mapping will preserve the shape but not
the area of the original mesh. For example, if we map
a checkboard image on the parameterization, the result-
ing texture mapped mesh will have the square of different
sizes. (See Figure 3 and Figure 5) However, since it needs
to fix the boundary vertices, the resulting triangles near
the boundary would thus be distorted in both areas and
angles. This method is more suitable for texture mapping
a texture with highly regular pattern such as checkboard,
since it will maintain the shape of the pattern in the result-
ing texture-mapped mesh.
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Figure 3: Comparison of a checkboard image mapping to
the mesh using DCP and DAP. Left : DCP, Right : DAP.
Notice the angle distortion in the DAP. Image taken from
[1].

3.3 Discrete Authalic Map(DAP)

Also introduced by Desbrun et al [1], this metric mini-
mizes the Chi energy and is written as the form of :

Eχ = ∑
j∈N(i)

cotγi j +cotδi j

|xi −xj |2 |ui −uj |2

Where γi j and δi j are corresponding angles,xi ,xj are
corresponding vertices in original mesh, andui ,uj are
vertex coordinates in parameter domain. See Figure 2.
Thus its critical point could be derived as :

Eχ = ∑
j∈N(i)

cotγi j +cotδi j

|xi −xj |2 |ui −uj |= 0

Analogous to DCP, the method is an area preserv-
ing mapping which minizes the area distortion. Although
the area of the original mesh would locally be preserved,
the shape tends to be distorted since the mapping from
3D to 2D will in general generate distortion. An example
of this is to map a checkboard image (see Figure 3 and
Figure 5 for comparison between DCP and DAP) onto
the mesh, and the resulting texture mapping will have
squares whose shapes are distorted while locally having
the same size.

3.4 Discrete Natural Conformal Map
(DNCP)

To find a natural boundary in parameterization, the work
by Desbrun et al[1] proposes another constraint imposed

Figure 4: Angles for natural conformal map.

on each boundary vertexi in the form of :

∑
∆i jk

cotα(ui −uj)+cotβ(ui −uk) = ∑
∆i jk

R90(uk−uj)

Where the anglesα andβ are corresponding angles atk
and j in triangle∆i jk , andR90 is a rotation by90◦. See
Figure 4.
The advantage of this mapping is that only two boundary
vertices need to be fixed to avoid the trivial solution of de-
generacy, and thus the distortion of vertices near bound-
ary would be less than those created by fixed bound-
ary method. Please note that although introducing nat-
ural boundary could reduce distortion and stretching near
boundary, if the boundary is ill-chosen, the resulting pa-
rameterization would still be highly stretched. Also, this
method will require to solve for a linear system roughly
twice as large as other fixed boundary method because
the right-hand side of the equation now includes bothu,v
coordinates in parameter domain. Thusu,v will depends
on each other when solving the system and we could not
solve them separately like in the case of fixed boundary.
This method in general is more suitable for finding a pa-
rameterization for a well-cut mesh, since all other fixed
boundary methods will be likely to greatly stretch some
features of the mesh near boundary. (See Figure 6 and
Figure 7 for example)

3.5 Mean Value Coordinate

Introduced by Floater et al[7], this metric is inspired by
the fact that harmonic function would satisfy the mean
value theorem, which is :
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Figure 5: Comparison of DCP and DAP. Left:DAP,
Right:DCP. Although not obvious, there is some angle
distortion in DAP mapping. Image taken from [1].

ui =
1

2πr i

∫

Γi

uds

Whereu is the vertex coordinate defined on the parameter
domain,Γi is a circle centered atui , andr i is the radius of
the circle. This formulation could be seen as that for each
vertexui in the parameter domain, its value (which is the
result of a harmonic function we want to approximate) is
equal to the average of the parameter values on a small
circle surrounding the vertex. Using this theorem as a
constraint to form the linear system, the author finds a fact
that the weightswi j only depend on the angles of adjacent
triangles rather than radius of the circle. The resulting lin-
ear system formulation is therefore written in the form of :

∑
j∈N(i)

tan(θi j /2)+ tan(φi j /2)
|xi −xj | |ui −uj |= 0

Whereθi j andφi j are corresponding angles andxi ,xj are
vertices in original mesh.See Figure 2.
The biggest advantage of this method is that for any trian-
gles, the tangent weights will always be positive, resulting
in a valid embedding. Thus it is more suitable for imple-
menting a global parameterization scheme where it would
be more troublesome to deal with folded triangles caused
by negative weights.

Table 1: Attribute summary of parameterization methods.

Method Preseved Always Linear
Attribute Valid System

DCP Angle No N×N
DAP Area No N×N
Mean Value N/A Yes N×N
DNCP Angle No 2N×2N

3.6 Summary

Table 1 summarizes features of the above methods. Since
they vary in the preserved attribute, validness of embed-
ding, and the size of the linear system to be solved, there is
not a single method that is better than others in all aspects.
One need to decide the properties of the application before
choosing the appropriate method for the parameterization
task.

4 Conclusion

This report makes an high-level introduction to mesh pa-
rameterization, and summarizes some of the more widely-
used planar methods for mapping a 3D patch onto 2D
domain. After some literature survey in recent works,
we found that the research works in new metrics for pa-
rameterization seem to become gradually less than before
due to the diversity and efficiency of the methods summa-
rized in the report. However, finding a good parameteri-
zation globally for the whole mesh while maintaining the
smoothness is still a challenging task, especially when the
distortion measured by some metrics need to be controlled
or minimized. Finding a parameterization in some base
domain other than plane (like spherical parameterization
proposed by Gotsman et al [12] and Praun et al[11]) also
draws some interest recently. We could expect more re-
search efforts to be made in finding a globally parame-
terization over arbitrary mesh that effectively minimizes
some metric distortion and mantains smoothness.
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Figure 7: The same camel model in Figure 6 is parameter-
ized using fixed-boundary method. Notice the distortion
of head and legs near boundary. Image taken from [17].
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