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Abstract

We present several powerful new techniques for similarity-based modelling of surfaces using geodesic fans, a new
framework for local surface comparison. Similarity-based surface modelling provides intelligent surface manip-
ulation by simultaneously applying a modification to all similar areas of the surface. We demonstrate similarity-
based painting, deformation, and filtering of surfaces, and show how to vary our similarity measure to encom-
pass geometry, textures, or other arbitrary signals. Geodesic fans are neighbourhoods uniformly sampled in the
geodesic polar coordinates of a point on a surface. We show how geodesic fans offer fast approximate alignment
and comparison of surface neighbourhoods using simple spoke reordering. As geodesic fans offer a a structurally
equivalent definition of neighbourhoods everywhere on a surface, they are amenable to standard acceleration
techniques and are well-suited to extending image domain methods for modelling by example to surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations I.4.7 [Image Processing and Computer Vision]: Size and shape

1. Introduction

Recent years have seen an explosion of research in the im-
age domain based on the idea of modelling by example.
These techniques, grounded in the application of fast neigh-
bourhood sampling and comparison methods, allow for intu-

Figure 1: Pulling a single vertex (blue) simultaneously de-
forms similar vertices by progressively greater amounts,
each according to their similarity to the edited vertex.

itive, powerful image modelling with very little artistic skill
required of the user. Most prominently, several high qual-
ity texture synthesis algorithms [EL99, WL00, Ash01] have
been developed using neighbourhood comparison as the ba-
sic operation, allowing the creation of unlimited amounts
of texture imagery from an example image. Applications
for this range from scene modelling for production to
foreground element removal in photographs. Image analo-
gies [HJO∗01] allow the reproduction of a sufficiently lo-
cal image transformation, given by a pair of before- and
after-transformation images, on new images using local joint
neighbourhood comparisons between the pairs of sample
and target images. Efficient and powerful image editing has
been demonstrated [BD02] by applying a modification to all
similar regions of an image simultaneously, where similarity
is determined by neighbourhood comparison.

In this paper, we develop a framework for local neigh-
bourhood definition, sampling, and comparison for surfaces,
which allows us to leverage this existing research in the im-
age domain to create novel surface manipulation tools. We
focus on a number of tools which generalize self-similarity
based image editing [BD02] to surfaces. Similarity-based
surface painting is a direct generalization of their system,
distributing colours over a manifold surface rather than
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an image. With similarity-based deformation, on the other
hand, we reproduce a vertex displacement over similar re-
gions of the surface, allowing efficient and intuitive editing
of the surface’s geometry. Finally, similarity-based filtering
directs automatic filters such as smoothing operators to mod-
ify only similar regions of the mesh. As in the image domain,
surface modelling tools based on local neighbourhood com-
parison and modelling by example are more intelligent and
intuitive than standard editing tools, and are especially use-
ful for non-artists, allowing the character of a mesh to be
changed convincingly with little user effort or artistic skill.

We also demonstrate a family of similarity measures. The
key abstraction to our framework is to define similarity in
terms of a signal over the surface. Typically, this signal mea-
sures geometry or colours, but it can be any arbitrary func-
tion defined on the surface. Thus, we can modify the ge-
ometry of an object based on similarities in its texture, or
paint an object based on geometric similarity. We may also
limit edits to correlations of signals, such as regions where
both the geometry and the colours match. A user is able to
pick the components of the similarity measure which make
the most sense for the task at hand, allowing for powerful,
widely-applicable and intuitive surface editing.

Another key contribution of this paper is our geodesic fan-
based framework for local surface comparison. Geodesic
fans are neighbourhoods where the sample positions are uni-
formly spaced in the geodesic polar coordinates of the cen-
ter, thus resembling a fan of geodesics on the surface. The
use of geodesics naturally avoids distortion of the neighbour-
hood, while uniformly sampling in this space offers very fast
simultaneous alignment and comparison of local portions of
surfaces, as we explain in Section 3.1. Their efficiency and
capability to generate oriented correspondences across sur-
faces are critical components of our applications, and we be-
lieve they will prove useful in many other contexts as well.

2. Related Work

Our work is inspired by the self-similarity based image edit-
ing system of Brooks and Dodgson [BD02]. As pixels of
a texture are painted, their system automatically reproduces
the painting over all similar areas of the texture. The opac-
ity of the paint is varied according to the similarity of the
affected regions with the region the user painted, causing
changes to blend naturally into the existing texture. Thus,
self-similarity based image editing provides a very powerful,
intuitive tool for quickly editing textures and photographs.
The similarity measure they use is based on neighbour-
hood similarity, as is typically used in the texture synthesis
community [EL99, WL00, Ash01, TZL∗02]. Such measures
have recently been used in many other related applications
as well, such as image analogies [HJO∗01], example-based
super-resolution [FJP01, LSZ01], and colourizing black and
white photographs from a colour example [WAM02].

Little of this work with neighbourhood com-

parison has been extended to surfaces. Re-
cent techniques for texture synthesis over sur-
faces [Tur01, WL01, SCA02, MK03, ZG03] map surface
regions into standard image-domain neighbourhoods,
effectively performing matching in texture space, and
assume that a pre-specified orientation field providing a
canonical mapping from world space to texture space. Curve
analogies [HOCS02] use comparison of neighbourhoods on
curves to reproduce a curve transformation on a new curve.
In order to achieve rotation invariant comparison, they use
an explicit alignment step to bring neighbourhoods into
correspondence before comparing them. This approach does
not generalize well to surfaces, as their alignment procedure
relies on curves’ 1D nature, and more general point set
alignment techniques are computationally very expensive.

There are some surface processing techniques that make
use of geodesic polar coordinates [Goe70], as we do. Welch
and Witkin [WW94] used geodesic polar maps in the 1-ring
of a vertex (a local conformal map) in fitting a local ap-
proximation of the surface. Mesh smoothing was demon-
strated [MKY98] by casting and sampling positions for a
standard smoothing kernel from geodesics, in both grid and
geodesic fan patterns. Biermann et al. [BMBZ02] cut and
paste mesh geometry using a set of geodesic spokes to pre-
visualize for the user the extent of the pasted result on the
target, as well as to help establish a common parameteriza-
tion of the cut region on both the source and target meshes.

Systems capable of producing results somewhat similar to
ours include Cellular texturing [FLCB95] and a more recent
feature-based variant [LDG01]. These methods generate ge-
ometry or texture over a surface procedurally using inter-
acting cell programs, but require some technical expertise
on the part of the user to produce an appropriate cell pro-
gram. Variational modelling systems [WW94, TSK97] com-
pute minimal energy surfaces based on semantic multireso-
lution constraints ranging from interpolating sets of points
to volume or surface area specification. The multiresolution
signal processing framework of Guskov et al. [GSS99] is
perhaps most similar to our own work in terms of the results
produced, but is based on direct editing of frequency bands
of the mesh. While this provides for powerful interaction, its
global nature can cause unintended side-effects throughout
the surface. Our system is in some respects complimentary
to theirs, as similarity-based filtering may be used to intelli-
gently avoid these side-effects where not desired.

Given that a goal of our research is to develop a
framework for measuring and matching neighbourhoods
on surfaces, work from the object matching community
is also relevant. Much of this work focuses on match-
ing entire objects and developing compact object de-
scriptions [HSKK01, FMK∗03, HK03], in the context of
content-based retrieval (see [FMK∗03] for a good survey),
rather than matching small portions of surfaces. Spin Im-
ages [JH99] are the most notable local comparison method
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here, and are widely used to establish feature correspon-
dences on surfaces for object recognition and matching.
Computed by spinning a sheet of buckets about an oriented
surface point and aggregating other points of the surface
into the buckets, it is not clear how they may be extended
to sample other values, such as colours or displacements,
which are unrelated to the spin image parameterization. Fur-
ther, while point correspondences are straightforward to es-
tablish, it is more difficult to establish oriented point corre-
spondences using spin images, as this would require three
point correspondences to be established in close proxim-
ity; it seems computationally difficult to establish additional
correspondences given one already established correspon-
dence. Shape contexts [BMP02] have been used for match-
ing shapes in images, and are quite similar to both spin im-
ages, being histogram-based, and geodesic fans, using bins
in the polar domain. Work with shape contexts, however, has
not considered orienting the histogram bins other than natu-
rally according to the image orientation or externally accord-
ing to some pre-specified frame (such as given by silhouette
edges). This work was also recently extended to matching
full 3D objects [KPNK03] using a canonical orientation step
based on the principal axes of the surface.

3. Local Surface Comparison

We begin by defining the problem of local surface compar-
ison. We are given a manifold surface M over which some
signal ω : M→ Rn is defined. We define the local difference
of two points p and q to be the integral of differences in ω

over corresponding regions in the neighbourhoods of p and
q. We approximate this local difference by sampling ω at
a set of corresponding points {pi} and {qi}, and summing
their differences under the L2 norm:

D(p,q) = ∑
i
||ω(pi)−ω(qi)|| (1)

Typically, ω measures the surface geometry, colours, or a
weighted combination of of such signals.

The main difficulty in evaluating D on surfaces is in estab-
lishing corresponding points {pi} and {qi}. We use a local
parameterization at each neighbourhood center and specify
offsets in the parameter domain. If the parameterizations are
aligned, then evaluating the same parameter domain offset
in both neighbourhoods produces corresponding points. We
first define our choice of local parameterization, then show
how they may be efficiently aligned.

3.1. Geodesic Fans

We use the geodesic polar parameterization of a point to es-
tablish sample positions on surfaces, sampling uniformly in
the associated parameter domain. If one arbitrary geodesic
passing through a point p is designated a polar base, every
other geodesic passing through p may be parameterized by
its angle θ with respect to the polar base in the conformal
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Figure 2: The conformal plane of a point on a surface. The
geodesics through a point have angles θi between them on
the manifold. A conformal map scales these angles by α =
2π/∑θi, so they sum to 2π , while preserving arclengths.
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Figure 3: A geodesic fan on a surface with the polar base
highlighted. The parameter domain is shown in polar form
and with samples arranged as a grid in parameter space.

plane at p (the conformal plane of a point maps all geodesic
curves through the point into the plane such that they cover
an angular range of [0,2π], as shown in Figure 2). Any point
q ∈ M may be parameterized with respect to p as (θ ,r),
where θ identifies a geodesic through both p and q and r
the arclength on this geodesic of q. Note that these coordi-
nates may not be unique for a given point, but any particular
set of coordinates identifies a unique point on the surface.
The pair (θ ,r) are called the geodesic polar coordinates of
q with respect to p. Thus, as shown in Figure 3, if we posi-
tion samples uniformly in these coordinates, the angle axis
gives geodesic spokes equally-spaced about the neighbour-
hood center, and the arclength axis spaces samples equally
along these spokes (note that samples will generally not fall
on vertices). We call this arrangement a geodesic fan.

3.2. Local Correspondence

Now that we have a local parameterization of the surface, the
remaining question is how to determine the direction of the
polar base in each neighbourhood that provides correspond-
ing parameterizations. This is equivalent to arbitrarily choos-
ing the polar base at one point, and finding an optimal cor-
responding direction at the other point. Note that when two
neighbourhoods are optimally aligned, their difference ac-
cording to (1) is minimal. Further, we may discretely rotate
a geodesic fan simply by cyclically permuting its spokes. For
example, let us number the spokes of a particular geodesic
fan g0(p) = (s0,s1, ...,sn), where si = {ωi0, ...,ωim} is the
set of all samples from spoke i. If we cyclically permute this
fan’s spokes by 1, we get g1(p) = (s1,s2, ...,sn,s0). Note that
this geodesic fan is precisely the geodesic fan that would be
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Figure 4: Left: A colour signal on a surface and two un-
aligned geodesic fans with highlighted polar bases. Middle:
Sampled signal from each fan; the difference would be over-
estimated since the fans do not correspond. Right: Cyclic
permutations of the spokes of the fan at q (each spoke maps
to a column in the sample grid). The permutation with mini-
mal difference with the fan at p approximately aligns them.

sampled if the polar base of g0(p) were rotated in the con-
formal plane by the spacing angle ( 2π

n ). Thus, as shown in
Figure 4, we may produce n cyclic permutations {gi(p)} of
one geodesic fan. This allows us to approximate (1), which
assumes corresponding points in each neighbourhood, as:

D(p,q) = min
i

D(g0(p),gi(q)) (2)

where the polar bases at p and q are chosen arbitrarily. Thus,
we approximate the optimal alignment by comparing one
fixed fan against all discrete rotations of the other; the ro-
tation with minimal difference aligns them.

Note that this alignment procedure is with respect to the
signal ω . It will not necessarily approximate the optimal
alignment of the geometry of the neighbourhoods. This is
by design, as, for example, the optimal geometric alignment
is likely to be quite different than the optimal alignment of
texture values. A user may choose the signal (or combina-
tion thereof) most appropriate to the task at hand. We now
describe these functions in more detail.

3.3. Signal Measurement

We have defined ω as a function over a surface which repre-
sents a signal of interest. An example of such a signal would
be a texture map. Here, a signal sample at some point of the
surface would be a 3-vector containing the colour of the tex-
ture at that point. With triangle meshes, we typically have
signal values defined at the vertices which are linearly in-
terpolated over triangles (map based signals have their map
coordinates interpolated, rather than the signal itself).

Since a surface is embedded in 3D space, we naturally
want to measure and compare the geometry of the surface for
many applications. To this end we define a function ωgeom
which represents the geometry of the surface; its value at any
point on the surface is simply that point’s position in space.
In order for this function to be useful in our applications, it
must be rotation-invariant, so we transform this position into
a local frame on the surface. Note that in order to ensure a
particular sample’s value is constant over discrete rotations

of the neighbourhood, this frame must be relative to the cur-
rent spoke of the neighbourhood. Thus,

ωgeom(pi) =

 ts
bs
n

(pi−p) (3)

where pi is the sample position, p is the neighbourhood cen-
ter, ts is the initial direction of the current spoke (a unit tan-
gent vector), n is the surface normal at p, and bs = ts×n.

3.4. Signal Correlation

It is often the case that features of various signals defined on
a surface are correlated. For example, features of the texture
on a face often correspond to features of the face’s geome-
try. In order to capture this kind of feature correlation among
signals, we can simply concatenate the vectors produced by
each signal (this is equivalent to simply adding the neigh-
bourhood difference produced by each, but is more amenable
to acceleration). In order to accommodate weighting of each
signal contributing to the similarity measurement, we typi-
cally do a global normalization of each signal sample based
on their maximum possible values (note that elements of
ωgeom are bounded by the neighbourhood extent). Thus, for
a d-dimensional signal ω , a particular sample of that signal
ωi is a d-vector, each element of which is normalized to lie in
the range [0,1/

√
d]. The user can then easily choose relative

weights for the contribution of each signal to the similarity
metric, as any given signal, regardless of its dimension, will
have a maximum sample difference of 1 under the L2 norm.

3.5. Acceleration and Indexing

An important feature of geodesic fans for future applica-
tions is that they are amenable to accelerated search us-
ing standard indexing techniques. By arranging the geodesic
fan samples into a long vector, searches over collections
of geodesic fans may be accelerated with kd-trees or vec-
tor quantization. Instead of each position producing a sin-
gle neighbourhood vector, however, it produces one for each
possible discrete rotation (i.e., one per spoke). While this in-
creases the size of the data structure by a constant factor,
most such indexing structures produce at least logarithmic
speedups, and thus remain useful. We can also use principal
components analysis (PCA) to reduce neighbourhood vector
dimension, further accelerating many techniques. We have
successfully applied vector quantization, PCA, and kd-trees
to geodesic fan search, achieving results similar to those
made by the texture synthesis community [WL00, HJO∗01].

For similarity-based modelling, indexing is not applica-
ble. We still considerably accelerate geodesic fan compar-
isons with vector quantization on the spokes of the geodesic
fans. We consider the set of samples on each spoke as a
long vector, and apply tree-structured vector quantization
(TSVQ) [GG92]. This effectively reduces the dimension of
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Figure 5: Similarity maps for the indicated position (black)
in the left image, with increasing neighbourhood extents.
Similarity increases from red to blue, as in the ramp (right).
From left to right, neighbourhood extents as a fraction of the
bounding box diagonal are 0.01, 0.02, 0.06 and 0.125.

each spoke to 1, as all pairwise differences of quantized
spokes may be precomputed and stored in a lookup table.
Fan-to-fan comparison time speedup is linear in the dimen-
sional reduction; for example, geodesic fans whose spokes
have 10 samples of a 3D signal are compared 30 times
faster. For similarity-based modelling, which requires stor-
ing a geodesic fan for each vertex of a mesh, there is a sim-
ilarly large reduction in memory usage as well. However,
TSVQ imposes a small cost for constructing the quantiza-
tion codebook, as well as for actually quantizing the spokes.

3.6. Implementation Issues

In practice, we restrict ourselves to triangulated manifold
surfaces. Geodesic fans have three parameters: the max-
imum arclength of a spoke, the number of spokes, and
the number of samples per spoke. Note that the number
of spokes provides a tradeoff between the accuracy of our
alignment approximation and the computation time. The
maximum arclength determines the extent of the neighbour-
hood on the surface, and the number of samples per spoke
influences the sample density. These parameters are typi-
cally selected in the same manner as the comparable param-
eters to image domain neighbourhoods: by visual inspection,
such that the smallest features of interest are adequately sam-
pled (i.e., such that one neighbourhood containing a smallest
feature, and one identical but for the smallest feature, could
be discriminated). For illustration, we show similarity maps
over the Venus model in Figure 5 with increasing neigh-
bourhood extents. Note that as more of the surface is taken
into account, greater discrimination of neighbourhoods oc-
curs (there is also relatively more noise due to lower sample
densities, as the other parameters are held constant).

We can use arbitrarily-shaped neighbourhoods for match-
ing using geodesic fans. For example, a user could paint on
the surface to identify a region they wish to match against.
Given such an arbitrary shape, we compute its centroid and
bounding circle in the polar domain, setting the geodesic
fan extent to contain this bounding circle. At comparison
time, after a fan has been discretely rotated, we mask off
any samples which are outside of the desired arbitrary shape
and omit them from comparison. In practice, however, we

have not found this to be very useful. The ability to arbitrar-
ily orient the desired shape on a surface can be unintuitive,
leading to unexpected matching results. It is likely that con-
straints need to be imposed on which discrete rotations of the
geodesic fan should be considered in this case. Note that it is
trivial, in general, to apply some set of constraints to which
rotations of a fan are allowable, if so desired; for example, a
vector field over the surface can supply a fixed orientation to
each fan, or indicate axes of symmetry to be considered.

For mapping a sample position from geodesic polar co-
ordinates (θ ,r) to world coordinates, we first arbitrarily
choose a world-space polar base, apply the rotation θ in
the conformal plane, and cast a geodesic in the result-
ing direction, placing the sample at arclength r. There are
numerous formulations for computing geodesics on sur-
faces [PS98, KS98, BMBZ02]. We use the formulation of
Biermann et al., as it is well-suited to these operations, cor-
rectly handles saddle points, and is quite efficient. Note that
the quality of geodesic tracing and the geometry signal de-
pends on the quality of the vertex normals, so very noisy sur-
faces may require smoothed normals (all examples shown
use face area-weighted normals). If a geodesic hits a mesh
boundary, the rest of its samples are marked unavailable and
omitted from further matching. For our applications, this
works well, though more sophisticated boundary handling
could be required in other cases.

4. Similarity-Based Surface Modelling

Similarity-based surface modelling generalizes the image-
based technique of Brooks and Dodgson [BD02] to surfaces.
As a portion of the surface is modified, the system simultane-
ously reproduces the modification at all similar areas of the
surface. As we are working with triangle meshes, we restrict
editing to occur at the vertices of the surface.

In the next section, we describe our method for geometry
editing in detail. We then describe simple extensions to allow
similarity-based painting on surfaces, and similarity-driven
filtering of surfaces. Finally, we discuss some benefits and
drawbacks of our system.

4.1. Similarity-Based Deformation

For purposes of description, we restrict editing to occur one
vertex at a time, although it should be evident that more so-
phisticated manipulation is possible using the same general
technique.

We sample a geodesic fan at each vertex of the surface as
pre-processing. The user then selects a vertex p to be edited,
and we compute D(p,q) for each vertex q ∈M, q 6= p. The
user then selects a difference threshold α; vertices whose
geodesic fan difference with the geodesic fan at p is greater
than α will not be affected by the similarity-based edit. Fi-
nally, the user moves the vertex to a new position pnew, and
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the system automatically transports a similar displacement
to each affected vertex q with D(p,q) < α .

To transport this displacement, we transform the move-
ment into the local neighbourhood frame given by the sur-
face normal np, polar base sp, and their mutual cross product
bp. Then, at each affected vertex q we produce the similarly
edited vertex qnew by transforming the displacement back to
world space using the local matched neighbourhood frame;
this frame (at q) is given by the surface normal nq, the spoke
mq of the geodesic fan at q which corresponds to sp, and
their mutual cross product bq (note that this frame is differ-
ent than the frame used in sampling ωgeom). The length of
the displacement is also scaled by the similarity between q
and p. Following Brooks and Dodgson, we use a simple lin-
ear scaling according to the distance between D(p,q) and α .
Thus, we the new position of q is computed as:

qnew = q+
α−D(p,q)

α
[mqbqnq]

 sp
bp
np

(pnew−p) (4)

Note that while we have formulated this such that arbi-
trary displacements may be transported, neighbouring ver-
tices on the surface will often have incoherent matched po-
lar bases. Thus, a displacement with a significant tangen-
tial component may be transported in different directions
at neighbouring vertices. More work remains to determine
whether this incoherence is inherent to the problem or an
artifact of our matching procedure; in any case, we expect
some spatial relaxation of matched orientations can alleviate
this problem. All deformation results presented here use dis-
placements in the normal direction only. On a related note,
we have sometimes found it helpful to use spatial (Lapla-
cian) smoothing of the similarity values over the surface, as
in some cases they can be undesirably noisy.

4.2. Similarity-based Surface Painting

Similarity-based painting may be achieved simply by trans-
porting colour vectors rather than displacements. However,
since colour vectors are unrelated to the local surface frame,
we need not transform them through the local matching
neighbourhood frames, and may just transport them directly.
Thus, if ωc is the colour signal, then (4) simplifies in the case
of similarity-based surface painting to:

ωc(q)← ωc(q)+
α−D(p,q)

α
ωc(p) (5)

where ωc(p) is the new painted colour at p.

4.3. Similarity-based Filtering

We may also drive filtering operations according to similar-
ity. Here, we have some filter which may be evaluated at
positions on the surface to produce displacements, colour
changes, or other signal changes. For example, a geometric

Figure 6: A single similarity-based deformation to the cow
(above, at green vertex) produces a much plumper version.
As expected, the legs, horns and ears are left unchanged.

smoothing filter produces a displacement of a vertex based
on its neighbours’ positions. With similarity-based filtering,
we scale the changes produced by the filter according to the
similarity of the unfiltered position with some base vertex.
This allows very intelligent and intuitive localization of fil-
tering operations. Note that this is effectively quite similar
to similarity-based deformation or painting, except that the
change at each vertex is produced computationally by the
filter, rather than being interactively chosen by the user.

The examples presented in this paper use a smoothing fil-
ter for simplicity, though other more complex filters may be
used. Following Mokhtarian et al. [MKY98], we compute
the new position of each vertex as the weighted average of
the sample positions in its geodesic fan, where weighting is
a Gaussian function of the geodesic distance from the vertex.

5. Results and Discussion

We demonstrate a range of similarity-based deformations in
Figures 1, 6, and 7. The deformations in each of these figures
used ωgeom for similarity measurement. With the bunny, we
emphasize the fur with increasing displacements, naturally
and intuitively modifying all of the fur simultaneously, while
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Figure 9: Inverting the similarity-based opacities used for painting distributes black paint to all areas dissimilar to the smooth
position on the leg of the dinosaur. Brown is distributed elsewhere by inverting opacities again, while white highlights are
produced by one more edit. Since opacity varies with similarity, the resulting colours blend well over the surface.

Figure 7: Our geometry measurement is sensitive enough
to identify and emphasize only the veins of this very smooth
hand model with one similarity-based deformation.

Figure 8: Correlating colour (left) with geometry (middle
left) in the similarity measure emphasizes the mannequin’s
hair while preventing changes to its face (middle right), as
would occur using only geometric similarity (right).

leaving the smoother tail, feet, and head mostly unchanged.
In contrast, one edit on a smooth region of the cow increases
its apparent bulk significantly without affecting any of its de-
tailed geometry, such as the legs, horns, ears, or udders. We
should note, however, that the geometry of the tail becomes
enveloped by the cow’s backside, as can be seen in the video,
as our system does not attempt to prevent self-intersections
when deforming the mesh. The hand example shows the sen-
sitivity of our geometric measurement; we are able to pick
out the veins of the hand model for emphasis, even though
the model is very smooth to begin with.

The control affording by signal correlation within our
framework is demonstrated in Figure 8. The middle-right
result, a deformation using correlated geometric and colour
signals, emphasizes features of the mannequin’s hair, while
leaving the face untouched. The very same deformation ap-
plied using only geometric similarity is shown at right. Since
portions of the face such as the nose and lips match the mod-
ified lock of hair geometrically, they undergo deformation as
well. While the result remains plausible, the character of the
face has been changed significantly. Our framework lets the
user decide the correct result.

We may also use colours alone to drive the similarity-
based deformation, as in Figure 10. Here, the depression
created in a groove of the bark texture is automatically ap-
plied to all such grooves on the model, effectively emboss-
ing the model with the selected texture feature. The effect,
while subtle in still images, is quite convincing in anima-
tion, especially compared to the original smooth model as
we demonstrate in the video. Note that somewhat similar
results have been obtained by interpreting a texture synthe-
sized over a surface as a displacement map [YHBZ01]; how-
ever, our technique allows the displacement to be based on
arbitrary texture features, and not simply those which have
grey levels easily distinguishable from the rest of the texture.
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Figure 10: The user depresses a single vertex in the groove
of the bark texture. With similarity based on texture features
rather than geometry, the texture pattern is stamped into the
surface, producing a much more convincing textured mesh.

An example of the power of similarity-based painting is
given in Figure 9 (this example uses geometric similarity).
We first distribute black paint to all the nooks and crannies of
the model using dissimilarity. Note that while these features
are geometrically fairly diverse, one thing they all have in
common is that they are concave and not smooth. Thus, se-
lecting a smooth convex region, such as on the leg, produces
low similarity with these areas. Inverting the usual opaci-
ties generated by our similarity-based painting system (equa-
tion 5) distributes black paint according to the degree of
geometric difference. The second edit uses the usual (non-
inverted) opacities to distribute shades of brown to the rest
of the model. Finally, we highlight strong edges of the model
in white with one more painting operation (to the white-

Figure 11: Smoothing is limited to the model’s face with
similarity-based filtering. Using colours for similarity and
comparing against the highlighted position on the cheek pre-
vents the filter from modifying the geometry of the hair.

Figure 12: A frequency enhancement filter produces global
changes in a foot model. Similarity-based filtering naturally
preserves the toes (middle right).

highlighted vertex in the original model). Thus, we produce
the coloured dinosaur at right with only three similarity-
based edits.

Finally, we demonstrate similarity-based filtering in Fig-
ure 11 (this figure is flat-shaded, to highlight the geometric
differences). Normally, a uniform smoothing filter applied to
the model destroys features all over the model (bottom left).
More recent feature-sensitive smoothing methods based on
bilateral filtering [JDD03, FDCO03] are sensitive to geomet-
ric features, but identify them only according to a geometric
smoothness metric. Here, we exercise control over a general
smoothing filter according to colour similarity. By selecting
a point on the cheek, we are able to limit smoothing to oc-
cur only on the face of the model, leaving the geometry of
the hair untouched. While the bilateral smoothing methods
could use our similarity metric for the signal they measure
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(instead of their geometric smoothness functions), our ap-
proach is more amenable to interaction; the general filter is
only evaluated over the surface once, and the changes it pro-
duces are themselves filtered afterward according to simi-
larity. Thus, the similarity parameters (threshold, base po-
sition) may be chosen interactively to produce the best re-
sult. Figure 12 shows a global frequency enhancement fil-
ter [GSS99] intuitively directed only whether the user de-
sires using similarity-based filtering. Pairing multiresolu-
tion signal processing with similarity-based filtering yields
a flexible, powerful system for surface modelling.

For the models we have shown, the bulk of computa-
tion time is in pre-computing geodesic fans and the re-
lated geodesic marching. Geodesic fans are constructed at
the rate of 500-2500 fans per second on the models shown,
which range from 5000-50000 vertices. Parameters used
were: neighbourhood extents of 1-4% of the length of the
model’s bounding box diagonal, 10-25 spokes per geodesic
fan, and 5-15 samples per spoke. After a change is made
to the surface, neighbourhoods may require resampling if
any sampled signal was changed. We can perform 2500-
10000 comparisons per second between pairs of geodesic
fans without acceleration.

Application of spoke quantization yields impressive re-
sults. Computing a TSVQ codebook of 500 to 2000 code-
words takes under two minutes for all examples shown.
Quantitatively, relative geodesic fan comparison error from
quantization (measured on the bunny model) averaged
0.027% (maximum 0.4%). Over 300000 spokes can be quan-
tized per second, and so quantization has negligible impact
on neighbourhood construction time. Further, both memory
usage and fan to fan comparison time are in practice lin-
early improved according to the effective dimension reduc-
tion. Generally, 25000-200000 comparisons per second may
be made between geodesic fans with quantized spokes, re-
sulting in similarity map computation time under a second
for all examples shown. All timings reported here are on a
standard PC with a 1.5Ghz processor and 768MB RAM.

6. Conclusions and Future Work

We have presented a new framework for local comparison
of surfaces using geodesic fans. Our method simultaneously
aligns and compares surface neighbourhoods, and is easily
accelerated using standard techniques. This framework al-
lows us to draw on the large body of image domain research
into modelling by example to produce powerful new tools
for surface manipulation. We have presented one such ex-
tension to self-similarity based image editing, which gener-
alizes to surfaces in numerous ways, taking advantage of the
possibility of defining several common signals over surfaces
with which to measure similarity. We have further extended
the control and applicability of this technique by decoupling
the signal being measured from the signal being affected by
the similarity-based edit. We expect many more such exten-

sions of image domain research are possible using geodesic
fans, including parameterization-free texture transfer (gen-
eralizing texture synthesis to the case where the sample is a
surface rather than an image), and surface analogies (repro-
ducing sufficiently local transformations on new surfaces).

We expect a multi-resolution generalization of geodesic
fans will prove useful in improving match quality and effi-
ciency. We are exploring the degree to which generic spoke
quantization codebooks, useful over classes of models, may
be made by including spoke data from numerous models.
This would significantly improve model preprocessing time,
but may yield unacceptable quantization artifacts. We have
not yet properly evaluated the accuracy of our alignment
procedure. It should be possible to produce an error bound
in our approximation given a frequency decomposition of
the signal within the neighbourhood. Relatedly, the geodesic
fan-based approximation could serve as a useful initial so-
lution to finding the optimal non-discrete alignment of two
neighbourhoods. Finally, we are interested in a possible vol-
umetric generalization (casting spokes in space). This would
not only remove the manifold surface requirement (neces-
sary to evaluate geodesics), but would also properly consider
collections of manifolds. Our surface-based sampling, for
example, cannot distinguish a point on a single cable from
a point on a bundle of topologically disconnected cables.
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