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Abstract—We present a new external memory multiresolution surface representation for massive polygonal meshes. Previous

methods for building such data structures have relied on resampled surface data or employed memory intensive construction

algorithms that do not scale well. Our proposed representation combines efficient access to sampled surface data with access to the

original surface. The construction algorithm for the surface representation exhibits memory requirements that are insensitive to the size

of the input mesh, allowing it to process meshes containing hundreds of millions of polygons. The multiresolution nature of the surface

representation has allowed us to develop efficient algorithms for view-dependent rendering, approximate collision detection, and

adaptive simplification of massive meshes. The empirical performance of these algorithms demonstrates that the underlying data

structure is a powerful and flexible tool for operating on massive geometric data.

Index Terms—Hierarchical data structures, level of detail, mesh simplification, out-of-core algorithms.
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1 INTRODUCTION

ADVANCES in disk storage, processing power, and laser
range scanning have made it possible to produce and

store massive polygonal meshes with relative ease. These
meshes have polygon counts reaching into the hundreds of
millions and typically far exceed the size of physical
memory and can even exceed the size of virtual memory.
Many traditional data structures and algorithms used in
computer graphics and visualization tasks rely on random
access to the data. When forced to access significant
amounts of data on secondary storage, these methods
become inefficient.

As a result, a significant amount of recent research has
focused on designing algorithms and data structures to
work with meshes that are stored out of core. In this paper,
we present a new surface representation for massive
polygonal meshes that is distinguished from previous work
in the combination of attributes it offers. These include
efficient runtime access to a multiresolution representation
of the mesh, access to the original surface data, and a
memory efficient construction phase. This new data
structure combines several well-known ideas, such as
octree decomposition of space and vertex clustering, along
with innovations such as a new mesh indexing scheme and
a scalable construction algorithm based on sorting. One of
the contributions of this paper is detailing how these
components can be combined to create a flexible and
scalable data structure that is relatively easy to implement.

Our surface representation is built as an external
memory octree. The bottom level of this octree is con-
structed by inserting the elements of the mesh into a fine
uniform grid. These grid cells link to an indexed mesh
representation of the original surface, which forms the

finest level of resolution. The octree is completed by a
bottom-up merging process, with higher octree levels
encoding coarser surface approximations. The construction
phase requires only two passes over the input mesh plus
external sorts of the vertices and faces. The sorts ensure
coherent access of the processed mesh data from disk.
Memory usage is proportional to the occupancy rate of the
grid and is insensitive to the size of the input mesh. The
power and flexibility of this data structure is demonstrated
by its use in three algorithms we have developed: a view-
dependent renderer, an approximate collision detection
system, and a surface simplification tool. The multiresolu-
tion nature of the data structure enables these algorithms to
work efficiently on massive geometric models.

2 RELATED WORK

In this section, we review previous work, focusing on only
those contributions most relevant to this paper.

2.1 Out-Of-Core Simplification

Several authors, Hoppe [12] and Prince [21] in particular,
have proposed methods in which a mesh is segmented so
each piece can be simplified in core. Simplification in this
setting is usually accomplished via iterative edge contrac-
tion [10]. While this method generates high quality results,
it can produce long running times. Lindstrom [16] proposed
accumulating quadric error information [7] with a uniform
grid and simplifying via vertex clustering. This method
exhibits memory usage independent of input size and was
later extended by Lindstrom and Silva [18] to be completely
out of core. Shaffer and Garland [22], [8] proposed a pair of
multiphase simplification techniques, processing the origi-
nal mesh using a uniform grid, and piping the output to an
adaptive clustering phase to generate a final approximation.
Recently, streaming out-of-core simplification methods
have been proposed by Isenburg et al. [13] and Wu and
Kobbelt [24]. In both cases, constraints placed on the input
format allow the mesh to be processed using a limited
amount of in-core storage.
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2.2 View-Dependent Rendering

One of the earliest view-dependent rendering (VDR)
systems was that of Xia and Varshney [25]. It uses an edge
collapse technique to construct a vertex split hierarchy as a
preprocessing phase. At runtime, a cut through this
hierarchy is determined by the current viewing parameters.
Luebke and Erikson [19] generalized this approach to use
vertex clusters instead of vertex pair contractions. Hoppe
[11] constructed a VDR system based upon his progressive
mesh data structure. All of these techniques construct the
vertex hierarchy in core.

Several authors have worked on moving VDR out of
core. The simplification algorithms of Hoppe [12] and
Prince [21] were both used for view-dependent rendering.
The former works on terrains while the latter method can
handle arbitrary polygonal models. El-Sana and Chiang [6]
described a method based on mesh segmentation that
achieves interactive frame rates for large models, but
requires significant preprocessing time.

DeCoro and Pajarola [5] extended FastMesh [20] to
render out of core using a customized paging algorithm.
Rendering quality is high, but it is unclear how well the
method scales; the data structure is constructed in core,
resulting in significant preprocessing times. Borgo et al. [2]
created a system for visualizing large meshes which uses a
small number of static levels-of-detail generated from the
OEMM data structure [4]. The system exhibits good
runtime performance, but no timings are given for the
construction process. In Guthe et al. [9], an out-of-core
view-dependent rendering system is based on an octree
decomposition of the mesh. The mesh patch in each cell is
simplified and a hierarchical level-of-detail (HLOD) is
generated by bottom-up merging. The runtime frame rates
reported are excellent. The full comparative performance of
the system is unclear as no specific data regarding triangle
throughput or HLOD construction time are given.

Lindstrom [17] described a VDR system with an under-
lying data structure similar to the one we propose; both
build out-of-core octrees using vertex clustering and
sorting. However, Lindstrom’s system employs an external
simplification algorithm as a first phase, so, in general, the
original mesh will no longer be available. In contrast, our
data structure offers explicit access to the original surface.
Lindstrom’s method does have the benefit of working
completely out of core, whereas ours uses some in-core
memory to generate the multiresolution structure. More
recently, Cignoni et al. [3] developed a VDR system for
massive meshes using a tetrahedral decomposition of space
to generate the HLOD structure. Like the system we
describe in this paper, refinement and coarsening occur of
the basis of cells, batching vertex splits, and contractions for
the sake of efficiency.

2.3 Collision Detection

While many methods exist for performing collision detec-
tion on meshes, few are designed to operate on massive
models. The significant work in this area is that of Wilson
et al. [23]. Their system performs well, handling interactive
collision detection in a 15 million polygon scene using
160 MB of memory. However, no data are given regarding
the preprocessing time.

2.4 Mesh Representations

Cignoni et al. [4] proposed an octree-based external mesh
representation called OEMM. It offers transparent access to
the underlying mesh data, enabling operations such as
simplification and mesh editing. In contrast to our octree,
which is read-only, the OEMM structure allows read and
write access to the mesh. Isenburg et al. [13] proposed a
sequenced representation for massive meshes. Here, the
mesh is encoded in a streaming format. Mesh accesses are
read-only and strictly sequential; decoding a piece of mesh
data requires all preceding portions of the mesh be read in
first. Neither mesh format includes a multiresolution surface
representation. As such, they are suited for a different set of
applications than our proposed data structure.

Among all of these contributions, the combination of a
scalable construction algorithm, efficient runtime access to
a multiresolution representation, and access to the
original surface remains elusive. The goal of our work
is to fill that gap.

3 EXTERNAL MEMORY OCTREE

The central component of our surface representation is an
external memory octree. The octree encodes multiple levels
of detail, with cells in the bottom level merging to form
coarser approximations of the surface in the higher levels.
In the following sections, we describe the octree structure in
greater detail and discuss how it is constructed.

3.1 Data Structures

In the finest level of the octree, a uniform grid is used to
sample themesh. Thedimensions of the grid are 2n � 2n � 2n,
where n is chosen by the user. Allocating a full grid is
infeasible for largen. Instead,weemploy ahash tablewith 32-
bit integer keys.We refer to such a key as an octindex. Hashing
a vertex into the grid is accomplished by locating the integer
grid coordinate for each vertex coordinate and then packing
the integer coordinates into a hash key. This constrains each
grid axis to employ atmost 10 bits,which limits the finest grid
resolution to be 1; 0243. This bounds the quantization error at
1=1; 024 of the length of each axis in the mesh bounding box.
For theDavid statue,with actualdimensions in centimeters of
approximately 517� 75� 57, the maximum error is then
5� 0:7� 0:6 millimeters. This approaches the raw scanning
resolution of 0:29mm along the X and Y axes [14]. The jump
from the finest approximate surface data to the actual
surface data is not too great in this case, indicating the
octree resolution should be acceptable for many meshes.m-
pling the mesh using a grid results in memory usage
insensitive to the size of the input mesh. The memory
consumed by the grid is instead proportional to the grid
occupancy rate, which is related to the Hausdorff dimen-
sion of the surface. We are generally interested in working
with heavily sampled range-scan data. Table 3 shows that,
for these types of surfaces, the occupancy rate of the octree
remains small across a range of mesh sizes. This demon-
strates the ability of the data structure to capture reasonable
detail in a space efficient manner. Our surface representa-
tion is less suitable for large meshes with very high depth
complexity, such as space-filling surfaces, where the
occupancy rate will be much higher. Large sparsely
sampled surfaces, such as massive CAD/CAM models,
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will also suffer as too few grid cells will be occupied to
generate a reasonable approximation of the geometry at
lower resolutions. These limitations are not specific to our
data structure, but are, in fact, common to all clustering-
based methods.

Several types of information are accumulated in the grid
during preprocessing. We track the average vertex position
within a cell and also gather information related to the faces
of the mesh. A face is hashed to the cells associated with its
three vertices. Each cell accumulates area-weighted normal
vectors and quadric error information. A quadric matrix is a
4� 4 symmetric matrix that can be used to compute an
area-weighted sum of squared distances to a set of planes
[7], in this case, the planes of the mesh faces. Quadric
matrices are additive and can be stored using only 10
coefficients; both are key properties for our purpose. The
quadric matrices for each cell are kept to compute a proxy
vertex that minimizes the quadric error function for the
octree cell. In the final output of the construction process,
this vertex position is saved and the quadric is discarded.

The construction phase generates an octree file consisting
of nodes, shown in Table 1, laid out in breadth first order on
disk, with sibling cells grouped together. Each node
requires 50 bytes of storage. Two temporary data structures
are also built: a file of quadrics that is discarded when
construction completes and an in-core octree map. The octree
map contains a 16 byte shadow node, shown in Table 2, for
each external octree node and enables efficient hashing into
the external memory octree. As this is the only significant
in-core data structure, the minimum memory required to
process even very large meshes remains modest (typically
less then 200MB, see Table 3).

Two other files are included in the final output. These are
the vertex file and face file, which together contain the
original surface. They are sorted into sets of vertices and

faces, respectively, which are associated with specific cells
in the octree. Each octree cell in the bottom level has an
index into the vertex file and a count indicating how many
vertices are contained in the cell. The values in the vertex
file record the difference between the vertex in the original
mesh and the proxy vertex in the associated octree cell. To
save space, these difference vectors are quantized using
16 bits for each coordinate and stored as short integers. This
results in a maximal precision of 26 bits per coordinate
which, after the mesh bounding box is fixed in space,
should be sufficient to capture the uniform precision
present in the original floating point value.

Each cell in the octree has an index and range referencing
the face file. A face is associated with the cell which contains
two or more of its vertices, but whose children contain no
more than one. In this cell, the face degenerates into a point
or line. When that cell is split, the triangle becomes
nondegenerate. For interior nodes, the faces are represented
as three octindices, indicating the cells in the bottom grid
level which contain the vertices. Each of these indices has an
associated offset, which allows the coordinates of the vertex
to be recovered from the vertex file. We use a different
format for faces associated with leaf nodes. For these faces,
at least two of the vertices have octindices identical to that
of the leaf node. These identical octindices need not be
stored. Instead, only offset fields are stored. Each face uses a
2 byte field to indicate which vertices are represented by
offsets alone. This saves from 6 to 10 bytes per face. The
relationship between the internal and external structures in
the final output can be seen in Fig. 1.

3.2 Construction Algorithm

The input to the octree construction algorithm can be in the
form of a polygon soup or an indexed face mesh. Generally,
the polygon soup format has been preferred for large data.
An indexed face mesh representation potentially requires
extra disk reads and seeks if the vertex access pattern does
not exhibit locality when the faces are dereferenced. While
we have not attempted to measure the coherence of the
meshes in Table 3, our experience is that the indexed
representations provide acceptable performance. In fact, in
our experiments, the polygon soup format performs slightly
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worse. Generating the mesh representation from a polygon
soup requires a reindexing of the mesh, negating the
efficiency gained from increased locality. Moreover, most
meshes are distributed in an indexed format, so the
generation of a polygon soup would require a time-
consuming preprocessing phase.

The construction algorithm works in three phases: vertex
scan, face scan, octree finalization. The vertex scan estab-
lishes occupancy in the octree and builds the vertex file.
Each vertex is hashed into the bottom level of the octree
map. Each entry in the map keeps a counter indicating the
number of vertices it contains. An index is computed for
each vertex consisting of the octindex of the cell into which
it hashed plus the value of the cell’s counter. We generate a
record for each vertex consisting of this vertex index plus
the coordinate data of the vertex. From this bottom octree
map level, we propagate the vertex insertion upward. After
the final vertex is processed, the octree map is scanned in a
breadth first manner and disk space for the external octree
is allocated along with disk space for the quadric file. At the
end of this process, each node in the octree map
corresponds to a node in the external octree and the
index I (see Table 2) is resolved to the index of the external
node. Within the external octree, for nonleaf nodes, the cn
and ci fields are set to indicate the number and location,
respectively, of the children of that node. The files are then
memory mapped with read-write access.

The second phase of the construction process scans the
mesh faces. This is time-intensive as it requires dereferen-
cing the vertices of each face in order to compute an area-
weighted normal vector and quadric matrix. Once these
quantities are computed, we then hash each vertex of the
face into the bottom level of the octree map and locate the
external memory octree node associated with that vertex.
The normal vector, the quadric, the vertex position, and a
face count are accumulated in each octree node. A record is
constructed for each face consisting of three octindices. We
also determine the split cell in the octree which, when split
into octants, causes the face to become nondegenerate. This
operation can be done efficiently by unpacking the bits of
the octindices for each vertex to generate three integer
triples, with each triple corresponding to an octree node. If
all of these triples are different, we right shift each integer in
each triple and compare again. This shifting operation
amounts to moving up a level in the octree. This process

continues until at least two of the triples match, with the
matching triples forming an octree index, and the number
of shifts indicating a level in the octree. These values
complete the face record. When all the faces have been
written to disk, the file is sorted by split cell. This results in
faces associated with the same split cell being grouped
together and the cells being laid out in breadth-first order.
A scan of the face file fills in the fi and fn fields for each
octree cell. This allows a cell to locate the faces that are
generated when it is split. The accumulated quadric,
normal, face count, and vertex position data for each cell
is propagated upward through the octree.

In the octree finalization phase, we compute the average
normal and a proxy vertex position for each octree cell. The
proxy vertex is found using the quadric matrix for each cell
in the manner described by Lindstrom and Silva [18]. The
quadric error for this vertex is then recorded in the field e.
The next step is to compute a normal cone described by a
half-angle a around the normal ~nn for each octree node o.
This is constructed as

a ¼ max ff~nn; ~nini if o is a leaf
maxðai þ ff~nn; ~niniÞ otherwise;

�

where, if o is a leaf, ~nini are the normals of the faces it
contains. If o is not a leaf, ~nini and ai are the normals cones of
the children of o.

The construction process completes by externally sorting
the vertex file using the vertex indices as keys. These keys
are stripped out during the sort, leaving a file of coordinate
triples sorted into sets corresponding to the cells they hash
into in the bottom octree level. A scan of the vertex file sets
the appropriate values in vi and vn, and quantizes the
floating-point values.

3.3 Results

The theoretical running time for the construction algorithm
is OðVin þ FinÞ, where Vin and Fin are the number of vertices
and faces in the input mesh. This relies on the fact that the
octree depth is at most 11 levels and assumes that the
external sort is a radix sort. Our current implementation
uses Linderman’s rsort program [15], which, while actually
a hybrid, still performs well. The memory requirements for
the construction algorithm depend only upon the occu-
pancy rate of the grid. If the grid contains C occupied cells,
the algorithm will require 16C bytes of memory.

Some experimental results for the octree construction
algorithm are in Table 3. The tests were run on a Linux box
with a 1.8 GHz Athlon XP2500+ processor and 1GB of main
memory. The timings show the process to be IO bound for
all meshes larger than the Buddha, as IO time accounts for
75 percent or greater of the total time in each case. This is
not entirely unexpected as the conversion to our external
mesh format requires a significant amount of data be
written to disk and sorted externally. The memory usage
reported indicates the amount of storage used by the octree
map, the only significant in-core data structure. Since data
on disk are accessed as memory mapped files, the operating
system uses any additional free memory to perform
caching. This behavior can be seen in the peak memory
usage values and effectively adapts the algorithm to its
environment, allowing increased performance given addi-
tional free memory.
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Among previous work, our external memory octree is
most comparable to the XFastMesh [5] system in that it
preserves access to the original surface data and produces a
multiresolution data structure suitable for view-dependent
rendering. The XFastMesh construction phase is performed
in core, requiring a machine with a significant amount of
virtual memory. In contrast, the amount of memory required
to build our external memory octree is insensitive to the size
of the input model. This enables our algorithm to process
meshes with hundreds of millions of polygons on machines
with a relatively modest amount of memory. As reported by
DeCoro and Pajarola [5], the largest mesh they converted to
the XFM format was the David 2mm model. The conversion
took 49 minutes on a 450 MHz Sun Ultra60. Our algorithm
processes the samemodel in 8minutes, with the difference in
speed attributable to the efficient use ofmemory and reliance
on vertex clustering as opposed to edge contraction. While
our experimentwas runon a fastermachine, our construction
algorithm is IO bound and benefits little from the faster
processor. The XFM file format is more concise than our
external octree, requiring 241 MB as opposed to 435 MB to
store the David 2mmmesh. However, as the size of the input
model increases, the cost of storing the octree diminishes
significantly as compared to the cost of storing the faces and
vertices. For such models, the vertex quantization and face
encoding we employ become much more effective in
constraining the final disk usage. Moreover, while minimiz-
ing the disk footprint is important for large meshes, the
current availability of cheap disk spacemakes it a less critical
consideration than in the past.

Lindstrom [17] created a system with similarities to the
one we propose. This work, developed concurrently with
ours, is a completely out-of-core VDR system which
employs an external memory octree. The most significant
difference is that Lindstrom builds the octree from a
simplified surface, resulting in the original surface no
longer being accessible. The trade off is that the construction
phase requires less time. When the size of the original and
simplified meshes is close, the two systems perform
similarly. Lindstrom reports it took 32 seconds to process
the Buddha on a dual processor 800 MHz PIII system with
880 MB of memory. Our algorithm required 19 seconds on a
more powerful uniprocessor system.

4 VIEW-DEPENDENT RENDERING

One of the most important applications for the external
memory octree is a view-dependent rendering system.
Even with the incredible advances in graphics hardware,
massive meshes have polygon counts high enough to
make the overhead involved in view-dependent rendering
worth the price.

4.1 Algorithm Overview

The mechanics of our VDR algorithm are similar to the one
presented by Luebke and Erikson [19]. At each frame, we
maintain a cut through the octree, with nodes along the cut
forming a front. All their ancestor nodes are considered to be
active. We maintain a front list and active list containing
pointers to these nodes. The nodes on the active list contain
the faces that are rendered in a given frame, while the nodes
on the front form the vertex set of the mesh that is generated.
Octree node data is read from disk using memory mapping.

The view-dependent rendering system memory maps the
external memory octree file, the vertex file, and the face file.
The latter two files can exceed the file size limit on some
systems, requiring that the system split the files andmemory
map one piece at a time. The data kept in an in-core octree
node is shown in Table 4. Exclusive of space used to hold data
about faces, the size of a node is 60 bytes.

The active list is initially empty, while the front list is
initialized to contain the octree root. At each frame, we use
tests involving the current viewing parameters, described in
Section 4.2, to determine whether to expand or collapse
nodes along the front. If a node on the front passes the view
tests, it is moved to the active list and its children are
brought into memory and added to the beginning of the
front list. If the node being expanded is a leaf, the children
are simply vertices pulled from the vertex file. These are
added to the list of children in the leaf node, but not added
to the front list. The front will move down at most one level
per frame. While this can result in some loss of quality for a
given frame, the degradation generally only occurs when
the user is moving the model rapidly. When movement
slows so the model can be inspected, the relative shallow-
ness of the octree allows the proper level of detail to be
reached quickly.

If a node on the front fails the view test, the parent is then
tested. If the parent fails, it is contracted; it is removed from
the active list and added to the front. The process proceeds
recursively on any children of that parent also on the active
list. Children of the parent on the front are flagged for
removal by setting the contracted bit. The flag bit tested is
used to prevent multiple testing of parent nodes. We
maintain a hash table, keyed by octindex and octree level, of
pointers to nodes on the front. Any changes to the front
require the table to be updated. In order to limit excessive
waits due to paging, updating stops after 0.75 seconds
elapse. Updating is interruptible and will continue from the
stopping point when processing begins for the next frame.

After updating the front, the active list is scanned and
the faces are rendered in immediate mode. Before rendering
can take place, the vertices of each face must be resolved
from octindex format to an octree node on the front. For
nodes just added to the active list, we search the front hash
table to find a pointer to a node on the front. The search

SHAFFER AND GARLAND: A MULTIRESOLUTION REPRESENTATION FOR MASSIVE MESHES 5

TABLE 4
Data Stored in a VDR In-Core Octree Node



uses the octindex of the vertex and varies the octree level
from deepest down to zero until a node is found. Since the
octree has at most 11 levels, the search requires only a few
constant time queries. If the vertex is resolved to an interior
octree node, the proxy vertex of that node is used for
rendering. If it maps to a leaf node that is active, the offset
of the vertex is used to select the vertex data from the leaf
node. For nodes that are not new to the active list, the
vertices are already resolved to pointers. However, each
pointer must be examined to ensure it still points to a node
on the front. If it does not, meaning the front has moved, the
search procedure outlined above occurs. Rendering the
faces can be performed using the averaged normals from
the octree per-vertex for smooth shading or by calculating
per-face normals on the fly for flat shading.

4.2 View Dependence Tests

The view dependence tests applied to the octree nodes
include view frustum culling, a backfacing test, and a screen
space coverage test. The backfacing test uses the normal cone
of the node, and is similar to that described by Luebke and
Erikson [19]. One difference is that, instead of computing a
bounding sphere for the geometry in the octree cell, we use a
sphere located at the cell center with radius equal to the
average distance from the cell center to the cell walls. A
viewing cone is computed from the eyepoint to this sphere,
with � denoting the half-angle of the viewing cone. If � is the
angle between the cell normal and the view vector and na is
the half-angle of the normal cone, a cell is considered
backfacing if �� �� na < �=2. While the sphere will not
closely approximate the geometry in the cell, it will generally
be conservative; the approximating sphere will usually be at
least as large as a tight sphere on the geometry. In tests using
tight spheres, we saw no significant difference in visual
quality. The effects of the backfacing tests on the David 2mm
model are shown in Fig. 3. Frustum culling is accomplished
by testing the sphere approximating an octree cell for
intersectionwith the view frustum.An example of the results
of this test can be seen in Fig. 4.

For the final view test, we compute the approximate
screen space coverage of a node and compare it to a user-
specified threshold T . Nodes with screen coverage less than
T fail the test. Fig. 2 shows the effects of varying the screen

space error threshold on the St. Matthew mesh. The
approximating sphere computed in the backfacing test is
used in this test as well. A well-known approximation [1]
for the projected screen area of a sphere is p ¼ nr

d�ðc�vÞ , where
p is the radius of the projected sphere, v is the eye point, c is
the sphere center, d is the normalized view direction, n is
the distance from the viewer to the near plane, and r is the
radius of the sphere. The screen area will then be �p2 in a
normalized device space (i.e., before the viewport transfor-
mation). Once again, the approximation error will be
conservative as the sphere generally will be larger than a
tight bounding sphere. To test the performance, we
implemented a tight bounding sphere hierarchy. We also
implemented an octree in which the cells were cubes, rather
than parallelepipeds. The approximate sphere projection
scheme had visual quality close to that of the cube-based
octree and performed better than the point set bounding
spheres, which coarsened too aggressively.

Used alone, the screen space coverage test essentially
coarsens the mesh based only on distance from the
eyepoint. We augment the test with a curvature heuristic
we have developed which increases the error threshold for
planar portions of the mesh and tightens the threshold in
areas of high curvature. This is accomplished by comparing
the projected screen area to Tc ¼ T�

2na
, where na is the normal

cone half-angle for the octree cell being tested. The values of
na are in the range ½0; ��, with the larger values occurring in
areas of high curvature. An example of the effect of the
heuristic can be seen in Fig. 7. The heuristic clearly does a
better job of allocating triangles to areas of high detail. The
striations seen in the mesh generated without the heuristic
are grid artifacts and are alleviated to a great degree by use
of the heuristic.

4.3 Results

Table 5 shows performance statistics gathered during
manually controlled viewing of the models on a system
with a 1.8GHz Athlon processor, 1GB of memory, and a
128 MB GeForce FX 5200 display adapter. The numbers are
averages from five trials for each model, each trial having
the same frame count. The values listed in the View Time
column include the time taken to perform the view-
dependent tests and update the front, while the values
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listed under Render Time denote the time taken to perform
immediate mode rendering of the polygons. While the
overhead is significant, the performance is still much faster
than rendering the entire original mesh. The view-depen-
dence tests are the current bottleneck in the system, with the
IO time being reasonable when averaged across all the
frames. However, paging can induce a performance hit
when the view shifts significantly. Fig. 5 and Fig. 6 show
frame time and IO time for viewings of the David
2mm model and the Lucy model. Significant activity occurs
when the model is first loaded and thereafter when the user
zooms in for a closeup look. Overall, the IO behavior is
reasonable, with no thrashing occurring. This indicates that
the layout of the octree on disk and use of memory mapped
paging provides acceptable IO performance.

The performance of the VDR system can be compared to
that of XFastMesh [5]. For the David 2mm model,
XFastMesh rendered an average of 17,000 polygons per
frame at approximately 27 frames per second. The overhead
of their system was roughly 53 percent, running on a
450 MHz Sun Ultra60 workstation. Our VDR system
rendered 78,059 polygons at 13 frames per second with an
overhead of 60 percent. The faster graphics card on our
system accounts for at least some of the higher polygon
throughput of 1 million polygons per second versus
459,000. It is also likely responsible for the view tests
requiring a higher percentage of the frame time in our
system. XFastMesh uses a higher quality simplification
algorithm than we do (edge collapse instead of vertex
clustering), so it should be able to achieve higher quality

images with lower polygon counts. At 8 ms per frame, the
average IO time for our system was not significantly worse
than the average block loading time for XFastMesh. This
indicates that, at least in the case of the David 2mm mesh,
using memory mapping to perform paging can offer
performance close to that of a custom paging scheme. In
any case, since the paging mechanism is orthogonal to our
VDR algorithm, a custom paging scheme could be
employed without any changes to the algorithm.

Comparison of the performance of our system with that
described in [17] is problematic due to the differences in
platform. On a dual processor 800 MHz Pentium III system
with a GeForce3 graphics card and 880 MB of RAM,
Lindstrom’s VDR system has a peak throughput of three
million triangles per second from a base mesh of around
2.7 million polygons. While the peak performance of our
system on the David 2mm mesh is only around half of this,
the difference is partly attributable to the end-to-end system
running multithreaded on a two processor system. This
allows view tests and rendering to be performed in parallel.
Another consideration is that our base mesh for the David
2mm model is the original 8.2 million polygons, resulting in
a larger octree. This results in more time spent paging in
data and testing octree cells, but has the benefit of allowing
greater visual detail.

5 COLLISION DETECTION

The second application we have developed for the external
memory octree is a simple collision detection system for
massive meshes. We perform approximate collision detec-
tion between models by using the octree cells as axis-
aligned bounding boxes of vertex sets. The collision
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Fig. 4. Surface outside the view frustum is coarsened.

TABLE 5
View Dependent Renderer Performance Running in an 800� 600 Window

Date are averages per frame, except for peak memory. IO time is included in view time.

Fig. 3. Surface unseen by the viewer is coarsened. (a) Visible surface.

(b) Backfacing, unseen.



detection system recursively drills down, testing for cell
intersections between octrees. In a typical collision detection
system, intersection between two leaves would result in
testing the polygons contained in each leaf against each
other for intersections. Polygons in our octree are associated
with their split cell, rather than a cell that completely
contains them. As a result, polygon versus polygon
intersection testing is problematic. Instead, our system
simply reports a collision if two leaf nodes overlap.

When examining the error inherent in this algorithm, one
should consider that the target meshes for this system are
densely tessellated. For the Lucy mesh, only 1 percent of the
triangles have edges long enough to penetrate more than
two grid cells at the finest level of the octree. The David
1mm and St. Matthew meshes have no such triangles. If we
assume no mesh edge spans more than two cells at the
lowest level, we can characterize the possible error. False
positive error occurs when two almost empty cells touch,
yielding a maximum error of two times the length of a cell
diagonal. For false negative error, the vertices of intersect-
ing polygons must fall into nonintersecting cells. This
implies that features smaller than two times the length of a
cell diagonal can interpenetrate without being detected.
Using cells in a 1; 0243 grid carved from the mesh bounding
box yields an error that will be a very small relative to the
total mesh size. In our experiments, the error has generally
not been noticeable. Our collision detection system focuses
on object placement rather than physical accuracy. The
system simply disallows mesh movements that would
penetrate another object, placing the meshes back in the

last recorded stable position. Some experimental results are
shown in Fig. 8, which charts the total frame time and the
time used for collision tests between two David meshes.
These two models, together containing 16 million polygons,
were rotated and translated in such a way as to periodically
collide with each over 1,000 frames. While the overhead is
noticeable, interactive frame rates are maintained through-
out, and IO activity is still manageable. Fig. 9 shows a
glancing blow between the two meshes, with the octree cells
tested for a possible collision highlighted in red.

6 SIMPLIFICATION

The external memory octree data structure offers the ability
to quickly generate single-resolution meshes that approx-
imate the original input mesh to a specified accuracy. This
simplification operation is similar to the work performed by
the view-dependent refinement system. In both instances, a
cut is formed through the octree, with cells along the front
specifying vertex positions and cells behind the front
specifying the faces. However, instead of using view related
tests, the simplification operation uses geometric error in
the form of the quadric error metric.

In our implementation, the user specifies an error
threshold or a target number of faces. The front list initially
contains just the root node. When using an error threshold,
a breadth-first traversal of the octree expands nodes on the
front with error exceeding the threshold. This continues
until all front nodes exhibit error lower than the threshold.
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Fig. 5. Frame and IO time for viewing the David 2mm model.

Fig. 6. Frame and IO time for viewing the Lucy model.

Fig. 7. The curvature heuristic creates an adaptive tessellation. (a) With

heuristic, 50K faces. (b) No heuristic, 50K faces.

Fig. 8. David/David test, frame and collision detection time.



Simplification using a target number of faces is similar, with
the front list taking the form of a priority queue ordered by
error. In this case, processing completes when the number
of faces in the active list exceeds the target.

To produce the simplified mesh, the list of active cells is
traversed and the octindices forming the faces are resolved to
the appropriate proxy vertex along the front. The tool
operates in one of two output modes. It can generate a
polygon soup,writing out each face to disk as it as processed.
An alternative mode produces an indexed face mesh. While
this representation is more compact, generating it requires
more memory as a hash table of previously encountered
vertices must be kept during the resolution phase.

The simplification algorithm consumes OðVoutÞ memory,
where Vout is the number of vertices in the approximation.
The expected time bound when generating a specified
number of faces is OðVout logðVoutÞÞ due to the use of the
priority queue. This assumes good hashing performance
when resolving the vertex identities. An approximation
produced by the simplification tool can be seen in Fig. 10,
with some quantitative results shown in Table 6. The
timings were taken on a 1.8 GHz Athlon XP2500+ processor
using 1GB of memory and show our method to be faster
than the uniform and multiphase clustering algorithms in
[8]. The quality of the simplified mesh surpasses that
produced by the uniform method, as the cut through the
octree forms an adaptive approximation with bounded
error. The 825,003 face mesh produced by our simplification
algorithm exhibits about 68 percent of the average error in a
similarly sized model produced by uniform clustering.
Table 6 shows the average and standard deviation of depth
in the octree for vertices in the approximation. The majority

of vertices are at most three levels away from the average
depth, indicating reasonable adaptivity. The processing
times are also competitive with those reported in [13],
where streaming simplification is applied to a mesh
formatted as a processing sequence. On an 800 MHz
Pentium III machine with 880 MB of RAM, their system
simplified the David 2mm model to 825,415 faces in
3 minutes and 50 seconds (not including the preprocessing).
Our tool generated a similarly sized simplification in less
than one quarter of the time on a processor roughly twice as
fast. While our simplification tool was faster, the streaming
simplification algorithm employs edge contraction opera-
tions and will generate better quality approximations.

7 CONCLUSION AND FUTURE WORK

We have described a new multiresolution data structure for
representing massive polygonal meshes. Our proposed
surface representation preserves access to the original
surface data and allows efficient access to a rich set of
sampled surface data. During the construction of this
representation, memory usage is insensitive to the size of
the input due to the use of a uniform grid to sample the
surface. By building the representation in a memory
efficient manner, the construction algorithm is capable of
processing meshes containing hundreds of millions of
polygons on commodity PC hardware. Using this data
structure, we have developed algorithms for view-depen-
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Fig. 9. Collision detection between David meshes.

Fig. 10. Simplifying the David 2mm mesh. (a) shows the original mesh.

(a) 8M faces. (b) 825K faces. (c) Octree depth.

TABLE 6
Simplification Algorithm Performance



dent rendering, approximate collision detection, and sur-

face simplification. Empirical results show that these tools

operate efficiently on massive meshes, demonstrating the

flexibility and scalability of the multiresolution structure.
There remain several avenues for improvement on the

structure we have presented. First, there remain opportu-

nities for more aggressive compression of the representa-

tion. Also, the view-dependent rendering system could be

improved by introducing multithreaded prefetching of cells

from disk. We may also consider visibility-based culling of

cells as this could allow the system to operate on meshes

that fill space more densely.
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