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Abstract

We present two complementary methods for automati-
cally improving mesh parameterizations and demonstrate
that they provide a very desirable combination of efficiency
and quality. First, we describe a new iterative method for
constructing quasi-conformal parameterizations with free
boundaries. We formulate the problem as fitting the co-
ordinate gradients to two guidance vector fields of equal
magnitude that are everywhere orthogonal. In only one lin-
ear step, our method efficiently generates parameterizations
with natural boundaries from those with convex boundaries.
If repeated until convergence, it produces the unique global
minimizer of the Dirichlet energy. Next, we introduce a new
non-linear optimization framework that can rapidly reduce
interior distortion under a variety of metrics. By iteratively
solving linear systems, our algorithm converges to a high
quality, low distortion parameterization in very few itera-
tions. The two components of our system are effective both
in combination or when used independently.

1 Introduction

Methods for automatically constructing surface parame-
terizations are essential tools for computer graphics. Many
techniques in common use—including texture mapping,
parametric remeshing, and finite element simulation—rely
on the availability of high quality surface parameterizations.
Several effective parameterization methods have been pro-
posed in recent years. In this paper, we introduce a pair of
new methods that can efficiently produce high quality pa-
rameterizations by iterative improvement.

We begin by developing a method to compute a free
boundary quasi-conformal parameterization from one with
prescribed boundary. The system is derived from a varia-
tional problem of fitting the gradients of the parametric co-
ordinate functions to two orthogonal guidance vector fields.
This produces an iterative method which, in a single step,

can significantly reduce parametric distortion by finding a
more “natural” boundary shape. Our method generates out-
put that has considerably lower distortion, both in areas and
angles, than other linear methods that directly solve for a
free boundary conformal parameterization [15, 3]. It is also
more efficient than recent linear methods [27], which re-
quire two improvement steps rather than one to achieve a
satisfactory boundary shape.

Next, we present a method for rapidly optimizing non-
linear energy functions to generate parameterizations low
in both area and angle distortion. By using the mean
value weights derived from the local minimizer of the en-
ergy functions and simultaneously optimizing the paramet-
ric values of all vertices, we obtain a very high convergence
rate. Compared with recent methods [26] that also effi-
ciently produce parameterizations with low distortion, we
are able to reduce the area distortion much further in a sim-
ilar time frame while keeping the angle distortion low.

2 Background

We are interested in constructing a parameterization of a
triangulated simplicial 2-manifold patch M represented by
its set of vertices V , edges E, and faces F . We assume that
the manifold has one or more boundary loops and that it is
embedded in a 3-dimensional Euclidean space by a coordi-
nate function x : V → R3. The parameterization we seek
is represented by a mapping φ : D ⊂ R2 → V that as-
signs coordinates (ui, vi) to each vertex i ∈ V . From the
piecewise linear coordinate functions u, v : M → D we
can construct two gradient vector fields ∇u,∇v : F → R3

that are constant over each triangle of M .
A number of methods have been developed to automati-

cally construct such parameterizations. For a comprehen-
sive overview, we recommend the survey of Floater and
Hormann [7].

Linear Parameterization Methods. Floater [5] demon-
strated that convex combination maps can be used to auto-



matically produce parameterizations by solving a single lin-
ear system. The resulting parameterization is provably bi-
jective provided that the boundary is mapped onto a convex
polygon. He subsequently developed a much simpler set
of coefficients using the mean value property of harmonic
functions [6].

Several authors have investigated harmonic maps [18,
4, 9] as a way to obtain conformal parameterizations be-
cause of the equivalence in minimizing the Dirichlet energy
and the conformal energy. Desbrun et al. [3] extended the
analysis to allow for unconstrained boundaries. Lévy et
al. [15] introduced a somewhat different approach to con-
formal parameterization based on a discretization of the
Cauchy-Riemann equations. Both of these conformal tech-
niques can be used to produce “natural” boundary shapes.

Zayer et al. [26] extended the usual linear system con-
struction by solving a quasi-harmonic problem. Their ap-
proach reduces the distortion of an initial convex parame-
terization by computing a mapping of the plane onto itself
that reproduces, as nearly as possible, the Jacobian of the
initial parameterization. In effect, it tries to find the most
isometric (least squares sense) mapping. Their approach
also accommodates unconstrained boundaries [27].

Non-Linear Methods. Non-linear optimization methods
can generally be used to produce parameterizations with
lower distortion than the linear methods just mentioned, but
at the cost of longer running times and greater implementa-
tion complexity.

The MIPS method by Hormann et al. [10] minimizes the
Dirichlet energy per parameter area. The angle-based flat-
tening (ABF) scheme by Sheffer and de Sturler [21] mini-
mizes a parameterization’s weighted sum of angle deviation
from the surface to achieve results with very low angular
(i.e., conformal) distortion. Sheffer et al. [22] subsequently
devised a more efficient numerical method (ABF++) for
solving the same underlying problem. Kharevych et al. [12]
proposed solving global optimization problems on the in-
tersection angles and the radii of the circumcircles of the
triangles to produce a conformal parameterization.

It is often convenient to express parametric distortion
measures in terms of the singluar values Γ, γ of the 3×2
Jacobian matrix Jφ. This approach can accommodate a
number of different metrics [20, 23, 2]. Most previous
techniques for minimizing such distortion metrics have fo-
cused on iteratively repositioning single vertices—by ran-
dom line search [20], Newton’s method [11], or conjugate
gradient [2], for example—until convergence. Yoshizawa et
al. [24] take a somewhat different approach, iteratively
reweighting a convex combination linear system in order
to diffuse distortion error over the mesh.
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Figure 1. Edges & angles in link of vertex i.

3 Quasi-Conformal Parameterization with
Free Boundary

Our goal in this stage is to compute a free boundary
quasi-conformal parameterization of a given surface patch.
Specifically, this means that we wish to find coordinate
functions u, v : V → R with the property that

∇v = R∇u (1)

where the operator R denotes a counter-clockwise rotation
of 90◦ about the surface normal. This is simply one rep-
resentation of the well-known Cauchy-Riemann equations.
Note that for discrete meshes, no such parameterization ex-
ists unless M is developable. Thus in general, we wish to
find a parameterization that is as conformal as possible.

3.1 Fitting to Guidance Gradient Fields

While we cannot expect to find coordinate functions that
globally satisfy the Cauchy-Riemann equations (1), it is ob-
viously trivial to find two vector fields g1,g2 : F → R3

such that g2 = Rg1. Assuming for the moment that we can
find a good pair of vector fields, we can frame the problem
of computing the coordinate functions (u, v) as a variational
fitting problem. We want to find (u, v) whose gradient fields
most closely approximate the guidance fields g1,g2:

min
(u,v)

∫
M

‖∇u− g1‖2 + ‖∇v − g2‖2 (2)

Ray et al. [19] propose a similar formulation, with the goal
of fitting a global parameterization to the principal direction
fields of the manifold.

It is well known [17, 25] that the Euler-Lagrange equa-
tions for this variational problem are simply a system of
Poisson equations:

∆u = div g1 ∆v = div g2 (3)

To solve these systems, we use the usual discrete definitions
of the divergence and Laplacian operators. The divergence
of the tangent vector field g at a vertex i ∈ V is given by:

divi g =
∑

(j,k)∈Lk i

g·Rejk (4)
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Figure 2. Going from arbitrary vector fields
w1,w2 to orthogonal vector fields with equal
magnitude g1,g2.

where Lk i is the link of the vertex—the set of all edges con-
necting vertices adjacent to i. By convention, we assume
that the edges (j, k) ∈ Lk i are always oriented counter-
clockwise about the outward-facing surface normal.

Then the Laplacian ∆if of a function f at vertex i ∈ V
is defined as the divergence divi(∇f):

∆if =
∑

(j,k)∈Lk i

cot αij(fi − fj) + cot αik(fi − fk) (5)

Here αij , αik are angles opposite the edges (i, j) and (i, k),
respectively, in the triangle (i, j, k), as shown in Figure 1.

3.2 Estimating Guidance Fields

Now the key question is how to pick the guidance vec-
tor fields g1,g2 to drive the computation of the coordinate
functions (u, v). In general, constructing “good” guidance
fields can be a complex non-linear optimization problem.
In our case, we want to find a conformal mapping of the
surface onto the plane. Therefore, we would like the pair
of guidance fields to have the same properties as the gradi-
ent fields of a perfectly conformal mapping— everywhere
orthogonal with equal magnitude. Given two arbitrary vec-
tor fields w1,w2, the following construction we propose is
guaranteed to produce a pair of vector fields g1,g2 with
these properties (Figure 2):

g1 =
1
2
(w1 −Rw2) g2 =

1
2
(w2 +Rw1) (6)

Then we pick w1,w2 to be the gradient fields of a con-
strained boundary conformal parameterization because of
their resemblance to the guidance fields of an ideal confor-
mal parameterization. In other words, we use the DCP sys-
tem of Desbrun et al. [3] to solve for coordinate functions
(s, t) satisfying: [

∆s
∆t

]
=

[
0
0

]
(7)

with the boundary mapped to a convex shape—we use the
unit circle in all our results. Then we let:

w1 = ∇s w2 = ∇t (8)

Figure 3. From an initial parameterization
(top), we produce a result (bottom) with a nat-
ural boundary shape and much lower distor-
tion in one linear step. The color ramp on the
right maps conformal energy from Γ/γ = 1
(gray) to Γ/γ = 2 (red).

Note that even in areas where the initial parameterization
has gradient fields ∇s,∇t that are far from conformal—
implying a large angle distortion—our guidance fields
g1,g2 are always orthogonal and equal in length. The fact
that it is linear in ∇s,∇t is also quite convenient since it
simplifies the final system considerably.

At this point, we can expand the Poisson system given
in Eq. 3 using our specific guidance fields and the discrete
divergence and Laplacian operators described above. This
produces the following system of equations:

[
∆u
∆v

]
=

1
2

[
∆s
∆t

]
+

∑
(j,k)∈Lk i

[
tj − tk
sk − sj

] (9)

For a mesh with n vertices, this gives two n×n sparse linear
systems, one for u and one for v. The solution of the system
is unique up to an additive constant. Thus we constrain one
boundary vertex to have coordinates (u, v) = (0, 0).

Figure 3 shows an example of this process. The high
level of distortion in the initial constrained boundary param-
eterization in the top row is effectively reduced after solv-
ing the linear system of Eq. 9 to get a parameterization in
the bottom row with considerably better boundary layout.
Also note that the left hand side of Eq. 9 is identical to the
usual DCP system, and the right hand side has non-zero en-
tries only in rows corresponding to boundary vertices, a fact
that can be attributed to our choice of w1,w2. So augment-



(a) Model sampled with 114K triangles

(b) Model sampled with 11K triangles

Figure 4. Our method (center) produces very
similar boundaries for both tessellations,
whereas LSCM (right) has more noticeable
differences and much higher area distortion.

ing existing parameterization code with our free boundary
method is a trivial task.

Our free boundary construction also has the added ben-
efit of being fairly insensitive to different tessellations of
the same surface shape. Figure 4 shows a surface that has
been tessellated at very different resolutions, the original
model with 114k faces and a QSlim [8] simplified model
with 11k faces. Most significantly, the boundaries are com-
plex and are sampled quite differently. Nevertheless, our
method performs robustly, producing very similar boundary
shapes. LSCM [15] produces more noticeable shape differ-
ences, in the character’s left hand and right leg, for example,
and has significantly higher area distortion.

Even though our free boundary scheme does not guaran-
tee bijectivity, experiments show that triangle flips happen
rarely, at a frequency very similar to that of the conventional
fixed boundary discrete conformal parameterization.

3.3 Controlling Boundary Evolution

Our system can be generalized by introducing a parame-
ter λ to control the degree of orthogonality of the guidance

(a) λ = 0 (b) λ = 1
6

(c) λ = 1
3

(d) λ = 1
2

Figure 5. Flattening a cow with different val-
ues of the evolution speed parameter λ.

fields, and thus the speed of boundary evolution:

g′1 = (1− λ)∆s− λR∆t (10)
g′2 = (1− λ)∆t + λR∆s (11)

These generalized guidance fields lead to the generalized
linear system:[

∆u
∆v

]
= (1− λ)

[
∆s
∆t

]
+ λ

∑
(j,k)∈Lk i

[
tj − tk
sk − sj

]
(12)

This generalization provides a way for the user to control
the “regularity” of the boundary. An illustration of the ef-
fect of varying λ is shown in Figure 5. Selecting λ = 0
preserves the initial convex boundary. Increasing towards
λ = 1/2 allows increasing boundary irregularity in order to
minimize distortion. A user can therefore control the trade-
off between boundary irregularity and distortion. This kind
of control is valuable when building multi-chart atlases, for
instance, where the goal is to balance overall distortion with
texture packing efficiency.

3.4 Iteration and Convergence

Our update procedure (Eq. 9) can obviously be applied
iteratively. It will converge to a fixpoint parameterization
(u∗, v∗) satisfying[

∆u∗

∆v∗

]
=

∑
(j,k)∈Lk i

[
v∗j − v∗k
u∗k − u∗j

]
(13)

Desbrun et al. [3] have shown that such a parameterization
attains the unique global minimum of the quadratic Dirichlet
energy:

ED =
1
2

∫
M

‖∇u‖2 + ‖∇v‖2 (14)

Indeed, Eq. 13 is the system they derive for their natural
boundary conformal parameterization (NDCP). However, it



(a) Iterative method starting from circular boundary

(b) Iterative method starting from NDCP boundary

Figure 6. Solving Eq. 9 iteratively converges
to the same global minimum of the Dirichlet
energy from very different initial states.

is critical to note that our fixpoint parameterization satis-
fies these equations at every vertex, whereas as the NDCP
parameterization does not satisfy the equations at the two
vertices whose locations are constrained to make the linear
system non-singular.

A trivial difference as this may seem, it can produce a
drastic difference in the results. As an example, Figure 6(b)
compares the convergent state of our approach and the out-
put of NDCP. Our result has a lower Dirichlet energy of
ED = 1.00578 as opposed to ED = 1.00649 for the NDCP
result. Figure 6 also demonstrates that from two very dif-
ferent starting points—a circular boundary one (top) and
the NDCP boundary one (bottom)—our iterative process
converges to the same global minimum. Note that when
measuring Dirichlet energy, the parameterization is scaled
to have the same area as the surface to avoid the Dirichlet
energy approaching zero due to shrinkage.

At times it may be important to find the minimizer of the
Dirichlet energy when angle distortion is the only consider-
ation. However, this often come at a high price in terms of
increased area distortion. Figure 7 shows the progression of
these measures during our iterative process. We can see that
the vast majority of measure reduction takes place during
the first iteration, and that area distortion can increase sig-
nificantly in later iterations. In practice, we recommend us-
ing a single improvement step. This generally yields more
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(c) Angle distortion

Figure 7. Distortion measured during itera-
tive improvement. The first iteration clearly
dominates in distortion reduction.

than 90% of the achievable improvement in distortion, and
the cost in running time is usually not worth the incremental
improvement in later iterations.

4 Fast Non-linear Optimization

The quasi-conformal method we have just described pro-
duces parameterizations with very low angle distortion, but
possibly high area distortion. In many applications it is de-
sirable to find a balance between area and angle distortions.
To accomplish this, we propose an optimization framework
that can quickly minimize a non-linear energy function by
iteratively solving a very small number (usually 3∼5) of
linear systems.

Our method is inspired by the observation that any pa-
rameterization φ can be obtained by solving one single lin-
ear system if given the appropriate weights. Specifically,
if we use the mean value weights [6] of φ to fill a sparse
convex combination matrix L, by the linear reproduction
property, solving L should give us φ in a single step. Thus
to find our target parameterization φ∗ that minimizes an en-
ergy function E, we can instead try to find the correspond-
ing matrix L∗ that will produce φ∗.

Obviously we don’t know L∗ yet, but we know that each
interior vertice of φ∗ must be located at the minimum of
E within its 1-ring. So starting from an initial parame-
terization φ0, we approximate L∗ by another matrix L0

constructed in the following way. For each interior vertex
i of φ0, we compute the target location within its 1-ring
that minimizes E (the 1-ring vertices doesn’t change), from
which we derive a set of mean value weights. Repeating this
for every interior vertex, we assemble a convex combination
matrix L0 row by row.

By solving L0, we get a new parameterization φ1 that is
much closer to φ∗ than φ0. Since all vertices are updated si-
multaneously in each step, iterating this process produces
a series of parameterizations that converges quickly, and
we know that the fixpoint must by construction be a (lo-
cal) minimum of E. Bundary vertices are held fixed across
iterations.



4.1 Finding Target Vertex Positions

To compute the minimum-energy position of a ver-
tex within its 1-ring, we use the Nelder-Mead simplex
method [16, 14]. This method will begin with a 2-simplex
(i.e., a triangle) contained within the 1-ring of the vertex.
The three corners of this simplex reflect potential target lo-
cations for the vertex. It iteratively applies one of five search
operations—illustrated in Figure 8—to the simplex, making
its way downhill and narrowing the region in which the op-
timal location may lie. The choice of move is guided by the
relative energy function value at the corners of the simplex.
The procedure terminates on convergence or after a maxi-
mum number of function evaluations have been performed.

Reflection Inner ContractionExpansion ShrinkContraction

x3

x1 x2

Figure 8. Possible search moves performed
on simplex x1x2x3.

The initial simplex is an equilateral triangle around the
vertex’s current position, with an edge length of 1/100 the
diameter of the 1-ring. We terminate the iteration when the
total change in the location of simplex corners is less than
1/400 the diameter, or the number of function evaluations
exceeds 100. The corner of the simplex with the lowest
energy value is then chosen as the target location.

The Nelder-Mead method is a widely used optimization
technique that has a number of attractive properties. It is
very efficient, requiring on average only 10–20 objective
function evaluations per vertex. The total time spent in local
minimum search is almost always less than the time spent
on solving the linear systems (see Table 2). As a direct
method, it requires only function evaluations and no deriva-
tives information, whose precise estimation can be very dif-
ficult to get. For convex energy functions, the Nelder-Mead
method will provably converge [14] (in pathological cases
to a non-minimizer). Finally, it has the added benefit of be-
ing trivial to implement.

4.2 Choice of Distortion Metric

Many distortion metrics are possible choices for the en-
ergy function E. As stated earlier, these are conveniently
represented in terms of the singular values of the Jacobian

(a) 200K model (b) 10K model

Figure 9. Our non-linear optimization sub-
stantially reduces distortion in only 4 itera-
tions, and does so equally well at different
resolutions.

matrix Jφ. We would like to minimize both area distortion
(Γγ) and angular distortion (Γ/γ). We have found that the
combined metric proposed by Degener et al. [2] provides a
good trade-off between these two factors. We use a variant
of their metric suggested by Floater and Hormann [7]:

E =
∑
i∈F

(
Γiγi +

1
Γiγi

) (
Γi

γi
+

γi

Γi

)
Areai (15)

This metric balances area and angle distortion, avoids pa-
rameter cracks, and penalizes both shrinking and stretching.
Being a convex function, our Nelder-Mead optimizer is also
guaranteed to converge with this choice of E.

Our method reduces the value of the energy metric very
rapidly (see Table 1). A very small number of iterations
are generally needed even for highly non-planar models or
models with large size (see Figure 9).

Our optimization process is also very robust to poor in-
puts. Figure 10 demonstrates starting the iteration with
convex combination maps computed from (1) mean value
weights and (2) randomly generated weights. Our opti-
mization eliminates the noises of the parameterization very
quickly, and the two cases converge to very similar results.

Since the mean value weights are always positive, the
parameterization we get after any number of iterations is
guaranteed to be bijective for a non-concave boundary. For
complex concave boundaries generated by our free bound-
ary parameterization method, our non-linear optimization
scheme also performs very robustly.

Table 2 summarizes the performance of our non-linear
method. It reports total number of iterations, average func-
tion evaluations per vertex, and running time for finding the
target vertex location and total time. Note that very few iter-
ations are required for convergence, and the running time is
quite modest. We use the UMFPACK [1] solver for our lin-
ear systems. Since all matrices used during iteration have
the same non-zero pattern, the symbolic factorization can
be reused, further improving efficiency.



(a) Our result (b) DTQH (c) Circle Patterns (d) NDCP (e) ABF

Figure 11. Comparison of free boundary parameterization results in terms of area distortion (first
row) and angle distortion (second row).

(a) Initial (b) 1 iteration (c) Converged

Figure 10. Whether starting with mean value
(top) or random (bottom) convex combina-
tion maps, our system quickly converges to
the same low distortion result.

Iteration

Model Init. 1 2 3 · · · ∞

Squirrel (a) 18.57 3.97 3.00 2.77 2.65
Squirrel (b) 92.23 4.85 3.27 2.86 2.65

Planck 23.38 6.09 4.09 3.43 3.03
Planck 24.31 5.62 3.86 3.31 · · · 3.11

Cow head 254.84 6.47 3.63 3.15 2.93

Table 1. Nelder-Mead convergence.

Time (s)

Model # Faces Iter. Avg. Func. Eval. Opt. Total

Squirrel (a) 18K 1 18.05 0.25 0.60
Squirrel (b) 18K 1 50.83 0.65 1.01

Planck 10K 4 16.35 0.50 1.02
Planck 200K 4 11.43 7.33 22.84

Cow head 8.5K 4 18.32 0.47 0.95

Table 2. Efficiency of non-linear optimization.



5 Results

We begin our performance analysis with the example
shown in Figure 11. This figure compares our linear method
with other conformal methods for parameterizing surfaces
with unconstrained boundaries. We measure area (angle)
distortion by the ratio of the area of the triangles (magni-
tude of the angles, 3 per face) in the parameter domain to
their counterparts on the surface, then visualize the per face
(per angle) distortion with a red-to-blue color scale shown
on the right. For area (angle) distortion, red corresponds
to an undersampling ratio of 4 (1.5) and blue corresponds
to an oversampling ratio of 4 (1.5). As we can see, the
linear NDCP [3] method may produce result with bound-
ary shapes that are far from optimal, thus leading to high
area distortions. For regions that are far from Delaunay,
the circle patterns method [12] may produce high distortion
and triangle flips. The discrete tensorial quasi-harmonic
(DTQH) method of Zayer et al. [27] gives a much nicer
boundary shape, but suffers from angle distortion caused by
shearing. Our method produces result that is low in both
area and angle distortion with an ideal boundary shape. The
more expensive non-linear ABF method [22] generally pro-
duce results with the lowest angle distortion, yet it does not
take into account area distortion.

In Figure 12, we demonstrate the capability of our
method in handling models with multiple boundary loops.
Notice that the initial parameterization is severely distorted
near the interior boundaries. Our parameterization method
is able to correct them and produce natural boundary shapes
in a single step.

Figure 13 compares the performance of our non-linear
optimization technique with DTQH [26], which like our
method, iteratively solves linear systems to reduce distor-
tion. Both results are produced using the same number of
iterations (i.e., linear system solutions). For area (angle)
distortion, red corresponds to an undersampling ratio of 5
(2) and blue corresponds to an oversampling ratio of 5 (2).
Our method achieves a significantly lower area distortion—
an average of 1.62 vs. 11.06—while having comparable an-
gle distortion— an average of 1.33 vs. 1.13.

Figure 14 compares our non-linear optimization method
with the traditional per-vertex relaxation optimization
method used by Sander et al. [20]. Here both methods are
used to minimize their L2 distortion metric. The left col-
umn shows an intermediate state of each minimization pro-
cess with similar L2 error. Notice that in our result distor-
tion is distributed much more evenly, leading to much more
smoothly varying checkerboard pattern, especially around
the ear. The right column shows the convergent states of the
two methods, and our simultaneous optimization scheme is
able to achieve a noticeably lower L2 distortion than the
local relaxation method: 1.428 vs. 2.682. Note that the pa-

(a) Prescribed boundary parameterization

(b) Our free boundary parameterization

Figure 12. Our method handles models with
multiple interior boundaries well.

(a) Our result. Area distortion 1.62, angle distortion 1.33

(b) DTQH result. Area distortion 11.06, angle distortion 1.13

Figure 13. Comparison of area distortion
(left) and angle distortion (center) of the cow
head results.



(a) Our method for minimizing the L2 metric

(b) Local relaxation method in Sander et al. [20]

Figure 14. In an intermediate state with equal
L2 metric (left), we achieve more evenly dis-
tributed distortion. Our convergent state
(right) also has a lower L2 metric of 1.428 than
the 2.682 of [20].

rameter crack in this case is a well-known artifact of the L2

energy itself.
Figure 15 illustrates the quality and flexibility of itera-

tively performing our linear free boundary parameterization
scheme. After one iteration (at left), the area/angle distor-
tions are reduced from 10.00/2.46 for the initial circular
boundary to 4.07/1.07. If we iterate until either area or
angle distortion no longer decreases—65 iterations in this
example—the area/angle distortions are further reduced to
2.93/1.05. The application has the flexibility to decide
whether the additional improvement is worth the additional
running time, and may terminate the iteration at any time.

Figure 16 demonstrates the coupling of the two methods
we propose. Starting from a DCP parameterization with cir-
cular boundary, we first apply our boundary improvement
method. Then the result is used as input to our non-linear
optimization framework, which improves the interior while
keeping the boundary fixed. The area distortion is reduced
from an initially very high 239.52 to a mere 2.88. In this
paper we use cut models provided to us as is. For the few
models that are closed, we cut out a a simple and natural
boundary curve.

6 Conclusion

We have presented a new system for parameterizing
surfaces consisting of two components: a linear quasi-
conformal method with unconstrained boundaries and a lin-

Figure 15. Performing 1 step of boundary im-
provement (left) vs. iterating until distortion
no longer decreases (right).

(a) Initial DCP parameterization

(b) Output parameterization

Figure 16. Combining our boundary improve-
ment and non-linear optimization methods.



ear framework for minimizing more general non-linear dis-
tortion metric. Both phases are efficient, easy to imple-
ment, and produce high quality results. Compared to similar
methods, our scheme is generally more efficient and pro-
duces results with lower distortion.

We believe that this work could be extended in a num-
ber of useful ways. Our linear phase could be extended to
produce global parameterizations by the use of appropriate
cross-boundary transition functions [13, 19]. It would be
of large benefit to allow the non-linear optimization frame-
work to optimize the boundary as well as the interior of a
parameterization. Further analysis should also produce in-
sight into the class of distortion measures that can be suc-
cessfully and stably optimized by this approach.
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