
Sketching Mesh Deformations

Youngihn Kho∗ Michael Garland†

University of Illinois at Urbana-Champaign

Figure 1: Step-by-step editing of a dragon character in under 3 minutes using our system. Each step represents 1–3 individual deformations.

Abstract

Techniques for interactive deformation of unstructured polygon
meshes are of fundamental importance to a host of applications.
Most traditional approaches to this problem have emphasized pre-
cise control over the deformation being made. However, they are
often cumbersome and unintuitive for non-expert users.

In this paper, we present an interactive system for deforming un-
structured polygon meshes that is very easy to use. The user in-
teracts with the system by sketching curves in the image plane. A
single stroke can define a free-form skeleton and the region of the
model to be deformed. By sketching the desired deformation of this
reference curve, the user can implicitly and intuitively control the
deformation of an entire region of the surface. At the same time,
the reference curve also provides a basis for controlling additional
parameters, such as twist and scaling. We demonstrate that our sys-
tem can be used to interactively edit a variety of unstructured mesh
models with very little effort. We also show that our formulation of
the deformation provides a natural way to interpolate between char-
acter poses, allowing generation of simple key framed animations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Transformations I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques

Keywords: interactive mesh deformation, sketch-based editing,
intuitive interfaces

∗e-mail: kho@uiuc.edu
†e-mail: garland@uiuc.edu

1 Introduction

While many techniques for geometric mesh deformation have been
developed, finding effective interactive techniques is still a chal-
lenging topic in modeling and animation. Observing that direct
interaction in 3-D space is often a confusing task for non-expert
users, we propose an intuitive interface for mesh deformation by
sketching curves in the image plane. Our system allows a user to
easily apply a broad range of deformations to unstructured polygon
meshes.

In our system, users sketch a reference curve in the image plane
both to determine a region of interest and to serve as a means of
controlling an individual deformation. By sketching a second curve
indicating the desired deformation of the reference curve, users can
easily achieve the deformation of the entire region of interest spec-
ified by the reference curve. By constructing a mapping of the re-
gion of interest onto the reference curve, our system also provides
a simple method for controlling additional parameters such as local
twisting or scaling.

Our system provides a great deal of flexibility to the user. It can
accept as input triangulated manifold meshes of any genus, contain-
ing any number of boundary loops. No further structural informa-
tion about the object is required. The user can use free-form ref-
erence curves without being constrained by geometrically defined
skeletal structures. The deformation curves can be significantly dif-
ferent than the “natural” skeleton of the surface, and work well even
when such skeleton structures would be ill-defined.

By using a sketch-based screen space interface, we avoid the
need for complex 3-D interactions that can be cumbersome for non-
expert users. Users can achieve relatively complex deformations by
simply drawing two strokes on the screen. Furthermore, we can
use these sketch-based deformations to achieve a natural interpo-
lation between character poses, thus producing simple key framed
animations.

Figure 2: A simple sketch-based mesh deformation. The user draws
a reference curve along the leg, followed by a second target curve.
This induces a deformation of the leg itself.

2 Related Work

There has been a great deal of work done in the past on developing
techniques for the modeling and deformation of geometric objects.
Here we survey only the most relevant work, with an emphasis on
techniques for interactive deformation.

Free-Form Deformations (FFD) are one of the most important
techniques for deforming surfaces [Sederberg and Parry 1986; Co-
quillart 1990; MacCracken and Joy 1996]. While their complex
control lattices provide very precise control over the resulting de-
formation, editing these lattices can be an unintuitive and time-
consuming process. Handle-manipulation approaches [Kobbelt
et al. 1998; Bendels and Klein 2003; Yu et al. 2004] are also pop-
ular and can produce pleasingly smooth deformations. However,
the range of deformations that can be produced with a single han-
dle manipulation is generally quite limited. Therefore a user must
perform a sequence of several individual step to achieve a more
complex result.

Curve-based deformation approaches such as Wires [Singh and
Fiume 1998] or medial-based shape deformations [Bloomenthal
2002; Yoshizawa et al. 2003] have received considerable attention
in recent years. Curves or skeletons in this type of methods can pro-
vide a natural means of capturing the structure of surfaces. Thus,
deforming surfaces by editing those entities provides a good means
of achieving large scale deformations. For this reason, our system
uses a curve-based approach with an emphasis on providing an ex-
tremely easy method for specifying free-form control curves.

There has been substantial interest of late in developing intuitive
interactive techniques, such as deformation by painting over sur-
faces [Lawrence and Funkhouser 2003]. Sketch-based interfaces
have emerged as one of the more popular approaches to building
user-friendly deformation tools. In Teddy [Igarashi et al. 1999],
users can create and edit objects by simply sketching strokes in the
screen. The system also proposes a deformation method based on
warp [Corrêa et al. 1998]. Recently, a sketching interface to FFDs
has been developed [Hua and Qin 2003]. Here sketch strokes are
used to manipulate scalar field embeded in 3-D space. In our sys-
tem, we employ sketching both to specify and deform the regions
of interest.

3 Overview

In our system, the user initiates a deformation by drawing a refer-
ence curve on the image plane. This curve implicitly defines a re-
gion of interest — that part of the surface which will be deformed.
The user then applies the deformation either by sketching a new
target shape for the reference curve or by directly manipulating a
deformation parameter such as twist or scaling.

(a) (c) (d)

(b)

Figure 3: Preparing for deformation of the left leg. We compute
two cutting planes (b) that will define the two loops bounding the
region of interest (c). Each vertex in the region is mapped to the
closest point on the reference curve (d).

Figure 2 shows a simple example of our system in action. The
user begins by drawing a reference curve along the leg. The re-
gion of interest is highlighted with a red-to-blue color ramp. The
user then draws a target curve indicating the desired deformation.
From this pair of curves, the system automatically generates the
deformation of the leg. A more complex editing session is shown
in Figure 1. Each step in this editing sequence corresponds to 1–3
individual deformations.

4 Beginning a Deformation

The user begins the process of deformation by drawing a reference
curve, which must be projected into the 3-D world space. From the
reference curve, we implicitly recognize the region of the surface
that the user wishes to deform. The user can optionally refine this
region selection using an interactive partitioning scheme. Once the
region of interest is identified, a “skinning” step associates each
vertex within this region with the closest point on the 3-D reference
curve. This basic process is illustrated in Figure 3.

4.1 Building the Reference Curve

We begin with a free-form sketch of the reference curve in the im-
age plane. We represent the raw sketch curve as a collection of line
segments taken directly from mouse events produced by the user’s
stroke. This raw curve is likely to be fairly noisy, especially when
drawn with a mouse rather than a tablet device. Therefore, before
proceeding, we smooth and regularize the raw sketch. We apply a
simple averaging filter and simplify the polyline by merging neigh-
boring segments so that each segment will be at least 5 pixels in
length.

Having regularized the reference curve in the image plane, we
must project it into the 3-D world space of the model. We first com-
pute the point of intersection of a ray from the view point through
the first point on the sketch curve. This hit point, along with the
normal of the viewing plane, defines a plane in world space parallel
to the image plane. We project the sketch curve onto this plane to
compute the 3-D reference curve.

4.2 Recognizing the Region of Interest

After the user-drawn reference curve is mapped into 3-D space, we
implicitly partition the model into three parts: (1) a static compo-
nent, (2) the region of interest, and (3) a rigid component. The static
component of the mesh will be unchanged by the deformation. The

Figure 4: (Top) Deformation of the body without partitioning. The
legs and feet are undesirably distorted. (Bottom) The two legs
are partitioned so that they can be transformed rigidly, producing
a more natural result.

region of interest is that part of the mesh to which the deformation
will actually be applied. The rigid component will be transformed
rigidly to maintain its connectivity with the region of interest. Fig-
ure 3 shows a simple example in which (1) the whole body beyond
the upper thigh forms the static component, (2) the leg is the region
of interest, and (3) the foot below the ankle is the rigid component.

The underlying assumption of our system is that the region of in-
terest is the part of the surface “covered” by the user’s sketch curve.
At each end point of the curve, the system computes a cutting plane
perpendicular to the reference curve (see Figure 3b). The intersec-
tion of these planes with the surface define triangle loops that par-
tition the input mesh. We define these triangle loops using a graph
cut formulation outlined in Section 4.2.1. In cases where a plane
defines multiple intersection loops, we select the loop containing
the nearest triangle to the end point. Having selected one boundary
loop per cutting plane, we now have two triangle loops bounding
the region of interest (as in Figure 3c). The vertices in each of
the 3 regions are labelled by a breadth first style “flood fill”. The
static component will be the region bounded by the loop created by
the starting point of the reference curve and the rigid component is
bounded by its ending point.

In higher genus cases, a single loop may fail to cut the object
into two parts. In such cases, multiple loops are required for the
partition. We begin with the set of all loops defined by the cutting
plane; these must collectively partition the object, as the plane itself
does. We then consider each loop other than the initially one in suc-
cession. We remove a candidate loop from the cut only if does not
merge the two components separated by the initially selected loop.
This process eventually produces exactly two disjoint components.

Our implicit recognition scheme works well in many cases.
However, additional explicit partitioning is useful in certain circum-
stances. For example, in Figure 4, when we lift up the back part of
the dragon, we probably want to rigidly transform each leg, while
the body is smoothly deformed. To do this, users can interactively

augment (or override) the automatically generated partition.

4.2.1 Interactive Partitioning

In our system, we adopt a graph cut partitioning scheme controlled
by the selection of cutting planes. The user draws a line to de-
fine a cutting plane containing that line and perpendicular to the
view plane. In general, this cutting plane will not follow existing
edges in the mesh but will cut across many triangles. Therefore,
we apply a fuzzy decomposition technique [Katz and Tal 2003] to
find the actual boundaries. We collect all triangles within a certain
screen-space distance from the cutting plane — we typically adopt
a 5 pixel distance limit. In general, the cutting plane might cre-
ate multiple separated fuzzy regions. In this case, the system picks
the region which is nearest to the view point. Then this set of tri-
angles serves as a fuzzy region. To compute the boundary, a dual
graph of the fuzzy region is created, where the weight of an edge
in the dual graph is the dihedral angle of the corresponding primal
edge multiplied by its length. Finally, a min-cut method on the dual
graph produces a cut corresponding to the boundary. The method
produces natural and smooth boundaries since the resulting cut fol-
lows relatively lower dihedral angles which are a good criterion for
natural boundaries. The freely deformable region is bounded by
only one partition. All other parts will be rigidly transformed.

4.3 Skinning and Parameterization

At this point, all the vertices in the region of interest have been
collected. We skin the surface by associating each vertex with the
closest point on the reference curve. Note that these closest points
are simply required to be on the curve; they need not be vertices of
the curve. Figure 3d shows an example of this association, connect-
ing each vertex with its corresponding point on the curve.

We represent each point on the reference curve by its normal-
ized arc length s. That is, for a given point we add up the length
of all segments from the origin of the curve to the point. We nor-
malize these values so that they range between 0 and 1. Thus s = 0
and s = 1 are, respectively, the origin and end points of the curve.
This induces a parameterization of the region of interest onto the
range [0,1]. For each vertex v we have the normalized arc length
parameter s(v) corresponding to the associated point on the refer-
ence curve. This parameterization is shown by the color ramp on
the leg in Figure 3a, with blue corresponding to s = 0 and red to
s = 1.

As outlined earlier, one or more regions of the surface will be
rigidly transformed. To assign the single transformation to each
partition, we introduce a virtual vertex for each of them. The virtual
vertex is placed in the center of the boundary between partitions
and is associated with the closest point on the reference curve. The
transformation of a virtual vertex determines the transformation of
all vertices in its partition.

5 Deformation Techniques

In the previous section, we have discussed the preparation steps
necessary to begin a deformation. The user draws a reference curve,
which is filtered and projected into 3-D. The region of interest is
determined, and each vertex within this region is mapped to a point
on the 3-D reference curve. Once this initial phase is complete, the
user can apply any one of the fundamental deformations described
in this section.

5.1 Sketch-Based Mesh Deformation

The primary deformation that we support is accomplished by
sketching. The user simply draws a new target curve, which we

φi
φi+1

si
si+1

v

vr

Figure 5: Illustration of sketch-based deformation. For each ver-
tex v in the mesh, we compute the closest point vr in the reference
curve. The total turning angle for the vertex v is linearly interpo-
lated in the line segment vr lies on.

interpret as a deformation of the original reference curve. Our sys-
tem then deforms the entire region of interest in an analogous way.
This provides the user with intuitive and flexible control over the
object’s shape. Figure 2 shows a simple example of this style of
deformation.

Recall that we have already assigned a value s(v) to each vertex
v which connects it to a corresponding point on the reference curve.
We can thus think of the deformation process as follows. The refer-
ence curve is scaled and bent to match the target curve. The vertices
of the mesh are connected to the reference curve through rigid iron
wires, so they are translated and rotated along with the reference
curve.

Preparation We begin by filtering and smoothing the target
curve in the image plane, just as we did the reference curve. To
prevent the mesh from tearing, we translate the target curve so that
it’s starting point is coincident with the starting point of the ref-
erence curve. We then map the target curve to the sketch plane
constructed in Section 4.1. Consequently, the user is not allowed to
change viewing parameters while drawing the two curves.

For each vertex v in the region of interest, we have a correspond-
ing normalized arc length value s(v) that provides us with the cor-
responding closest point vr on the reference curve. Similarly, we
use the same normalized arc length parameter to compute the cor-
responding point vt on the target curve. This provides us with all
the information necessary to compute to desired transformation at
v.

Computing Rotational Angles We deform the surface by rotat-
ing each vertex v about the corresponding reference point vr. The
axis of rotation is simply the normal of the sketch plane and the
rotational angle θ(v) is the signed angle between the tangents at vr

and vt . However, since our curves are sequences of line segments,
we must interpolate rotational angles along the curve in order to
avoid significant discontinuities.

To compute the rotational angle θ(v), we must first locate the
line segment [si,si+1] of the reference curve on which vr lies. We
define φi to be the signed exterior turning angle of the curve at node
i (see Figure 5). We will define the tangent direction at the node si
by the total turning angle Φi:

Φi =
i−1

∑
j=0

φ j +
φi

2
(1)

Note that we use the half-angle φi
2 so that the tangent at si will be

the average direction of the two incident line segments. This defines

(a) (b) (c)

Figure 6: An example of twisting the neck of a dinopet model.
(a) We first specify the approximate part of the neck to twist. (b)
The neck is twisted by specifying the rotation axis (black) and the
amount of angles (grey). Note that in this example, rotational angle
is linear to the parametrization which is color ramp coded. (c) The
result from a different view point.

the total turning angle at the nodes of the curve. For a point on the
interior of a segment [si,si+1] we interpolate the turning angle

Φ(s) = Φi +
φi

2
b(2α)+

φi+1

2
b(2α −1) (2)

where
α =

s− si

si+1 − si
(3)

and

b(x) =











1 if x > 1,
x if 0 ≤ x ≤ 1,
0 otherwise.

(4)

The blending function b is chosen so that Φ(si+si+1
2) = Φi +

φi
2 . In

other words, so that the tangent direction at the midpoint of the
segment will be parallel to the segment.

We can compute these total turning angles for both the reference
and target curves. They tell us the signed angle difference between
the initial segment of the curves and the given points vr and vt .
We also need to account for the global rotation θg, which is the
angle between the initial segments of the two curves. Our desired
rotational angle is now simply

θ(v) = Φr(s(v))−Φt(s(v))+θg (5)

Once we have computed the target position and the desired rota-
tional angle for a vertex, the final deformed position v′ of the vertex
v will be

v′ = T (vt)R(θ(v))T (−vr)v (6)

where T indicates translation and R indicates rotation about the nor-
mal of the sketch plane.

5.2 Twisting

We can also achieve twisting deformations by locally rotating the
the region of interest about the reference curve. For example, con-
sider the simple twisting operation shown in Figure 6. The refer-
ence curve is now the rotational axis and the user’s second mouse
stroke is used to control the amount of twisting being performed.

To use the reference curve as a rotational axis, it must be placed
inside of the the model. To do this, we must alter the way in which
we project the reference curve into world space. We first compute
a set of joints. For each node in the reference curve in the image

plane, a joint is defined as the average of hit points on the nearest
front face and the back face by the ray from the viewpoint to the
vertex. Consequently, we disallow twisting if any of nodes in the
sketch curve has only one hit point. Now, the rotational axis is
the curve connecting these joints. Note that this new curve looks
the same from the user’s perspective, as it still projects to the same
image space sketch curve. As we did in sketch-based deformation,
the rotational axis for the vertex v (i.e., the tangent direction at s(v))
is linearly blended.

We must now compute the rotational angle θ(v). Obviously
using the same rotational angle at all vertices would not produce
the desired result. We have found that the most natural twisting
is achieved when the rotational angles θ(v) vary linearly with the
normalized arc length s(v). Thus, we compute a maximum angle
θmax proportional to the length of the second line drawn by the user
and use a rotational angle θ(v) = s(v)θmax at the vertex v. The new
position for vertex v will therefore be

v′ = T (vr)R(tr(v),θ(v))T (−vr)v (7)

where tr(v) is the interpolated tangent direction of the reference
curve at s(v).

5.3 Indirect Control Using Parameterization

The parameterization s(v) that we have established to map the re-
gion of interest onto the reference and target curves also provides
a natural mechanism for adjusting deformation parameters. We al-
low the the user to gain finer control over the deformation by using
a standard spline control to specify modifications of the deforma-
tion parameters as a function of s. In this section, we briefly outline
three such controls.

Adjusting Target Curve Turning Angles In our sketch-based
deformation, the end result is obviously controlled by the shape
of the target curve. By fine tuning the target curve, we can fine
tune the deformation. This allows the user to draw a fairly simple
base target curve and then interactively adjust its shape to achieve a
specific intended deformation.

We control the shape of the target curve by adjusting the exterior
turning angles φi, which were discussed in Section 5.1. By con-
trolling these angles, we can radically alter the shape of the target
curve.

We present to the user a standard spline box with which they can
define an offset function F(s), which we initialize to the identity
function F(s) = s. For each vertex at position si along the target
curve, we compute an adjusted turning angle φ ′

i as:

φ ′
i = φi +F(si)− si (8)

and use these adjusted turning angle to compute an adjusted defor-
mation.

An example of this type of deformation is shown in Figure 7. We
begin by sketching a very simple deformation that achieves a coarse
deformation of the overall shape. We then adjusted the rotational
angles to achieve a final S-shaped shark.

Scaling Control The scaling control allows users to locally in-
flate or deflate the surface along the reference curves. This tech-
nique can be thought as an interactive version of generalized cylin-
ders [Snyder and Kajiya 1992]. We achieve local scaling by con-
trolling the magnitude of the offset vector v−vr of a vertex v. We
use the same skeleton curve connecting joints as in twisting for
computing these offsets. The magnitude of the offset vectors is
scaled by a function F(s) which is initially the constant function
F(s) = 1. We see a typical example in Figure 8. We have locally
inflated and deflated the left Queen along a vertical reference curve
using the spline function shown on the right.

(a)
 (b)

(c)
 (d)

(e)
 (f)

Figure 7: Adjusting target curve turning angles can fine tune the
deformation. An initial coarse deformation (b) is adjusted using a
spline control (c) to produce a more nuanced pose (d–f).

Figure 8: By locally scaling offset vectors, we can locally inflate
and deflate the initial shape.

Rotational Angle Control for Twisting As discussed in Sec-
tion 5.2, we linearly increase the twisting angle as a function of
s. We can just as easily add an additional scaling adjustment to
produce θ(v) = F(s(v))θmax. This allows the user to control the
relative “speed” of the twist along the region of interest.

5.4 Increasing Smoothness

In most cases, our techniques produce pleasingly smooth deforma-
tions. However, local jaggedness can occur as the result of factors
such as excessive noise in the user’s sketch or the limited screen
resolution. For these circumstances, we introduce a deformation
optimization technique that can automatically smooth away such
artifacts. It also provides a straightforward mechanism to blend the
boundaries between rigidly transformed components and the freely
deformable region.

Any one of the many general mesh smoothing algorithms could
be applied to smooth the deformation. However, this would have
the undesirable side-effect of removing actual small-scale features
from the surface as well. Therefore, we seek to directly optimize
deformation parameters to produce a smooth result. The central
idea is neighboring vertices should undergo similar transformations
to maintain smoothnes, while still remaining faithful to the user’s

Figure 9: The benefits of automatically smoothing the deformation.
(Left) Sketch-based deformation. The top picture is before the opti-
mization, and the bottom picture is after the process. (Right) Twist
deformation. The left one shows non-optimized twisting deforma-
tion, and the right one shows the result of the optimization.

specified transformation.
For each vertex vi in the region of interest, let us consider its de-

formation parameter ui. For sketch-based deformation, we would
separately consider both rotational angles θ(vi) and the normal-
ized arc length s(vi). Starting from an initial set of parameters
(u1, . . . ,un) generated from the user’s input, we wish to find a new
set of parameters (u′1, . . . ,u

′
n) that minimizes the following energy:

E = ∑
i

(

∑
j∈Ni

wi j(u′i −u′j)
2

)

+wc(ui −u′i)
2 (9)

where Ni is the set of vertices adjacent to vertex vi.
The first term of this energy function provides a measure of the

smoothness of the parameter ui. We choose the edge weights wi j
to be the inverse edge length wi j = ‖v j − vi‖

−1. The second term
in the summation measures the deviation of the new parameters u′i
from the parameters ui derived from the user’s input. Empirically,
we find that setting the weight wc such that ∑ j∈N(i) wi j = 10wc pro-
vides a generally good balance between smoothness and this fidelity
term.

We solve this optimization problem using a traditional Newton
method. The initial values are simply those before the optimization,
which makes the second cost term zero. Since our cost function is
quadratic and the number of neighboring vertices are usually very
small, the Hessian matrix is constant and sparse. Therefore, the
optimization problem can be very efficiently computed by solving
a linear system through one-time LU factorization. Furthermore,
the initial values tend to be fairly close to the optimal solution, so
we observe that the number of iterations necessary is generally very
small.

The result of this automatic optimization process are shown in
Figure 9. The fairly obvious artifacts in the unoptimized deforma-
tion are entirely removed following the optimization process.

5.5 Adaptive Mesh Refinement

If the user applies a significant deformation to the model, the res-
olution of the input mesh may be insufficient to support smooth
deformation. The result will be a locally jagged deformation. To
account for this, we propose a simple adaptive refinement scheme
for smooth deformation. Our refinement primitive is the edge split.
For each edge, we test two criteria to decide whether to split or not.
We split the edge only if the two criteria are both satisfied.

The first criterion is edge stretching, defined as the ratio of the
edge length in the original mesh to its length in the deformed mesh.

Figure 10: When performing significant deformations, the result
can appear jagged if the input mesh is too coarse. Adaptive mesh
refinement removes these artifacts.

We will consider splitting any edge whose ratio exceeds a specified
limit. We also apply this criterion recursively to new edges pro-
duced by splitting previous edges. Experimentally, we find that a
ratio of 1.5 works well as a threshold; here an edge will be split if
it is stretched by more than 50%. This criterion will tend to refine
more along the direction of deformation, but less in the orthogonal
direction, as can be seen in Figure 10. In this example, we subdi-
vide more along the direction in which the neck is stretched, but
relatively less around the neck.

The second criterion is edge curvature. We only wish to split
those edges that are sufficiently bent by the deformation. Each can-
didate edge in the original mesh is tentatively splitted by inserting a
vertex at the midpoint of the edge. Then the inserted vertex is also
transformed to a deformed position. If the angle between the two
new edges in the deformed mesh is less than some threshold, we
accept the split. Otherwise, the split is cancelled. This means that
if the split edges are close to parallel, the split is not necessary. We
have found that an angle threshold of π − π

24 produces good results.
In Figure 10, the bent part in the lower neck is more refined, while
the middle part is less refined.

Our refinement scheme is designed to minimize the number of
faces added while maintaining the smoothness of the deformation.
However, the resulting mesh might have many triangles of bad as-
pect ratio. If more nearly equilateral triangles are desired, then a
regularization process that can perform additional operations such
as edge flipping could be considered [Welch and Witkin 1994;
Kobbelt et al. 2000].

6 Results

In this section, we consider several examples of using our system
to edit unstructured polygon meshes. All results were generated
by interactive editing on a standard consumer-level Windows PC.
We render all sample models with flat shading in order to better
highlight the structure of the surface mesh.

Figure 1 provides a step-by-step illustration of an editing ses-
sion in which we repose a dragon character. We begin by opening
the mouth, which requires only two sketch-based deformations or
exactly 4 lines to be drawn by the user. We subsequently twisted
both arms and the neck. We conclude by using two sketch-based
deformations to bend the tail. The entire editing session — includ-
ing program startup, loading the mesh from disk, and interactive
editing — required less than 3 minutes.

In Figure 11 we see an example of using sketch-based deforma-
tion to bend an initial cylinder into multiple letter forms. Each let-
ter was created by drawing a single reference curve on the cylinder
followed by a single target curve in the shape of the intended letter.
Even though the original cylinder has been stretched and bent fairly
significantly, the deformed surface remains smooth. Note that, in
order to keep the number of triangles fixed across all examples, we
have not applied our adaptive refinement scheme in this case.

Figure 11: Applying significant deformations to bend a cylinder
into various letter forms still results in smooth surfaces.

Figure 12: Reposing a horse with 4 simple deformations.

Figure 12 demonstrates the deformation of another more com-
plex figure. We begin by interactively partitioning the front two
legs. The body is then deformed by a single sketch-based deforma-
tion (requiring only 2 strokes). We conclude by twisting the neck,
and bending the front legs by a single sketch-based deformation for
each.

We can deform the hand shown in Figure 13 into a number of
other poses quite easily. For the examples shown, we applied 1–2
sketch-based deformations to each of the fingers. Total modelling
time is a mere 1 minute per hand pose. Note that the input is fairly
smooth and the mesh is rather dense. Our system can still handle
this mesh at interactive speeds and the deformed meshes are just as
smooth as the input.

Figure 14 demonstrates a leg deformation using three different
reference curves. We can clearly see that the system behaves well
even when given quite different reference curves. The user is not
constrained to draw a reference curve that follows the “natural”
skeleton of the leg, and indeed can even draw a reference curve
beyond the edge of the surface. All of these reference curves are
sufficient to unfold the leg. We can also see that by drawing some-
what different reference curves, the user can easily excercise con-
trol over the nuances of the deformation result. For instance, the
middle result bends the leg more rigidly than the others because the
reference curve follows the shape of the leg less closely.

6.1 Skeleton Based Morphing

In our sketch-based deformation, the reference curves can be
thought of as skeletons for the regions of interest. Utilizing these
implicit skeletons, we can produce quite natural pose transitions
that are much more pleasing than using simple linear interpolation
(see Figure 15).

To morph using the skeletons at each intermediate frame, we
must interpolate the curve from the reference and the target curves

Figure 13: The original hand model (left) and two deformed hands.

Figure 14: By using different reference curves, the user can produce
subtly different results.

then deform the object according to the interpolated curve. The in-
terpolated curve is computed automatically by linearly interpolating
lengths and rotational angles. Its total length is linearly interpolated
from the lengths of the reference and target curves. As defined in
Section 5.1, there is a rotational angle θ(v) at each vertex of the
reference curve that deforms it into the target curve. The rotational
angles for the interpolated curve are simply αθ(v) for α ∈ [0,1].
This approach is similar to as-rigid-as-possible interpolation [Alexa
et al. 2000], in the sense that we separate the rotation and the scale
components.

Once the interpolated curve is computed, the vertex positions
are computed in the same way as in the sketch-based deformation
described in Section 5.1. The only difference is that we substitute
the interpolated curve as the target curve.

7 Conclusion and Future Work

We have proposed a new and intuitive approach to interactive de-
formation of unstructured polygon meshes. Users of our system
can make significant edits to 3-D objects by simply drawing a pair
of curves on the image plane. The reference curves drawn by the
user simultaneously partition the mesh, serve as a control handle
for the deformation, and provide a scalar field that parameterizes
the region of interest. This parameterization can be used to easily

Figure 15: Interpolating our deformation parameters generates
much more natural in-between frames than linear interpolation of
vertex positions.

control additional deformation parameters such as twist and scal-
ing. As our method does not use any fixed skeletal structure, users
have great freedom in choosing the way in which the surface will
be deformed. Since our system is based on simple 2-D sketching
operations, it is both intuitive and easy to use, and allows users to
quickly create deformed objects. It is also relatively appealing to
non-expert users. Furthermore, our deformation method can pro-
vide for natural morphing between two key frames by using the
sketch curves as implicit skeletons.

Our current system is a very effective tool, but there are also nu-
merous ways in which it could be improved and extended. Our cur-
rent approach is targeted more towards reposing bodies and limbs.
Editing fine-grained surface features, such as the shape of the eyes
on a face, is more difficult. Extending our sketch-based method-
ology to support editing of such surface features would be very
desirable. Although our method is quite fast and suitable for in-
teractive editing of fairly large models, the performance could be
improved by incorporating multiresolution techniques such as [Lee
et al. 2000]. Extending skeleton-based morphing into a complete
system for easily creating simple key-framed animations is another
very appealing direction.

References

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 157–164.

BENDELS, G. H., AND KLEIN, R. 2003. Mesh forging: Editing
of 3d-meshes using implicitly defined occluders. In Symposium
on Geometry Processing 2003.

BLOOMENTHAL, J. 2002. Medial-based vertex deformation. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM Press, 147–151.

COQUILLART, S. 1990. Extended free-form deformation: a sculp-
turing tool for 3d geometric modeling. In Proceedings of the
17th annual conference on Computer graphics and interactive
techniques, ACM Press, 187–196.

CORRÊA, W. T., JENSEN, R. J., THAYER, C. E., AND FINKEL-
STEIN, A. 1998. Texture mapping for cel animation. In Pro-
ceedings of the 25th annual conference on Computer graphics
and interactive techniques, ACM Press, 435–446.

HUA, J., AND QIN, H. 2003. Free-form deformations via sketching
and manipulating scalar fields. In Proceedings of the eighth ACM
symposium on Solid modeling and applications, ACM Press,
328–333.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3d freeform design. In Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., 409–
416.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954–
961.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-
P. 1998. Interactive multi-resolution modeling on arbitrary
meshes. In Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, ACM Press, 105–114.

KOBBELT, L. P., BAREUTHER, T., AND SEIDEL, H.-P. 2000.
Multiresolution shape deformations for meshes with dynamic
vertex connectivity. In EUROGRAPHICS 2000.

LAWRENCE, J., AND FUNKHOUSER, T. A. 2003. A painting inter-
face for interactive surface deformations. In Pacific conference
on computer graphics and applications.

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced sub-
division surfaces. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 85–94.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-form deforma-
tions with lattices of arbitrary topology. In Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques, ACM Press, 181–188.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proceedings of the 13th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 151–160.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deforma-
tion technique. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, ACM Press,
405–414.

SNYDER, J. M., AND KAJIYA, J. T. 1992. Generative modeling: a
symbolic system for geometric modeling. In Proceedings of the
19th annual conference on Computer graphics and interactive
techniques, ACM Press, 369–378.

WELCH, W., AND WITKIN, A. 1994. Free-form shape design
using triangulated surfaces. In SIGGRAPH ’94: Proceedings of
the 21st annual conference on Computer graphics and interac-
tive techniques, ACM Press, 247–256.

YOSHIZAWA, S., BELYAEV, A. G., AND SEIDEL, H.-P. 2003.
Free-form skeleton-driven mesh deformations. In Proceedings of
the eighth ACM symposium on Solid modeling and applications,
ACM Press, 247–253.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

