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Abstract

While many effective automatic surface simplification algorithms
have been developed, they often produce poor approximations
when a model is simplified to a very low level of detail. Further-
more, previous algorithms are not sensitive to semantic or high-
level meanings of models. In this paper, we present a user-guided
approach for mesh simplification that aims to overcome such limi-
tations. Our proposed method allows users to selectively control the
relative importance of different surface regions and preserve various
features through the imposition of geometric constraints. Using our
system, users can produce perceptually improved approximations
with very little effort.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Surface and Object Representation;

Keywords: user-guided simplification, level of detail, quadric er-
ror metrics

1 Introduction

Throughout the last decade, many automatic simplification algo-
rithms have been developed to generate an approximation of fewer
polygons from complex models. While they produce very plausible
results in many cases, at very low levels of detail their approxima-
tions do not preserve the visual appearance of the original model
very well. Furthermore, previous automatic algorithms ignore se-
mantic or high-level meanings of models, since these are hard to
measure by the simple geometric error metrics used by earlier meth-
ods. For example, features such as eyes in a face are semantically
crucial but geometrically small (Figure 1).

Since perceptual importance is ultimately determined by a hu-
man observer, we argue that human guidance in the simplification
process is a natural way to solve the problem mentioned above.
Starting from this idea, we propose a new user-guided simplifica-
tion system that allows a user to interactively control an automatic
simplification method. Our system is built upon thequadric based
simplification algorithm [Garland and Heckbert 1997], which is a
very efficient algorithm for interactive systems. With our system,
users can generate visually superior approximations with very little
effort. Specifically, users can guide the computation of errors and
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Figure 1: Simplified face models of 650 triangles by fully automatic
QSlim (left) and by our system (right). Both the eyes and lips look
significantly improved by user’s guidance.

vertex placement of edge contractions by directly interacting with
the underlying algorithm.

We provide two main tools: adaptive simplification and geomet-
ric constraints. Using adaptive simplification, users can specify that
some areas are to be simplified more than others. For example, a
user can specify important areas such as the eyes of a face by di-
rectly painting over the surface (Figure 1). Geometric constraints
preserve features by guiding the placement of vertices on the ap-
proximation. We suggest three types of geometric constraints: con-
tour, plane, and point constraints. Users can apply appropriate con-
straints to accomplish various tasks. For instance, point constraints
are used to preserve the positions of vertices. An example is shown
in Figure 5 where a point constraint is introduced on each tooth.

2 Background

Among various simplification algorithms, we will survey the liter-
ature most relevant to our own work. Readers can refer to recent
surveys [Garland 1999; Luebke et al. 2002] for more comprehen-
sive reviews.

Many successful methods are based oniterative edge contrac-
tion [Hoppe 1996; Garland and Heckbert 1997; Lindstrom and Turk
1998]. These approaches iteratively collapse edges in increasing
order of cost. One important feature of these methods is that they
produce hierarchical structures calledvertex trees. In the vertex
tree, each vertex in an original model forms a leaf node, and each
edge contraction makes a parent node of its two incident vertices.
Once a vertex tree is created, we can extract various levels of detail
by choosing appropriatecuts, by performing all the contractions
below the cut. The most common application of this hierarchical
structure is view-dependent level of detail control [Hoppe 1997;
Xia and Varshney 1996; Luebke and Erikson 1997].

Almost all previous simplification methods concentrate on
purely automatic processes. As far as we know, the only two previ-
ous semi-automatic simplification methods areZeta [Cignoni et al.
1998] andSemisimp [Li and Watson 2001]. These two methods
allow user interaction to produce improved approximations. Pojar



and Schmalstieg [2003] have also independently developed a user-
controlled method based on weighted quadrics, adopting a similar
approach to our own.

Zeta requires a pre-computed sequence of primitive simplifica-
tions as input. Users can selectively refine or simplify a model
by locally changing error thresholds to extract different approxi-
mations that did not appear during the original simplification pro-
cess. However, they are limited by the ordering constraint of
the pre-computed sequence of primitive simplification operations.
Semisimp takes a pre-computed sequence of edge contractions and
allows users to extract new approximations such as inZeta. This
is essentially extraction of different cuts in the input vertex tree.
However, unlikeZeta, Semisimp exploits the vertex tree structure
to provide segmented simplification. With its hierarchy manipula-
tion tool, users can partition an input model to match the seman-
tics of the model, and simplify the model in a segmented fashion,
in which contractions may not span partitions. By doing this, it
sidesteps the ordering constraint of the pre-computed sequence of
edge contractions.

In contrast, our approach starts with an input model, then cre-
ates a vertex tree by directly guiding the underlying algorithm it-
self, making it a superset of these previous approaches. Rather than
allowing the user to directly manipulate the vertex positions of ap-
proximations, we provide geometry constraints to control the ge-
ometry of approximated models during the simplification process.
We believe that these differences make our approach more general
and flexible. Furthermore, since our system creates vertex trees, it
can easily be coupled with the functionality provided by systems
such asSemisimp andZeta.

Some researchers have also considered error metrics based on
models of human perception. Lindstrom and Turk [2000] suggested
an image-driven simplification algorithm in which the error is mea-
sured in the image space. Recently Watsonet al. [2001] analyzed
the visual fidelity of various automatic error metrics in terms of
human based experimental measures. Luebke and Hallen [2001]
and Reddy [2001] suggested new approaches based on human vi-
sion models. Since their approaches focused on low-level human
perception model, their application is somewhat limited: their per-
ceptual model cannot recognize higher-level semantics. For exam-
ple, low-level vision models cannot distinguish actual features from
noisy fluctuation such as fur, which have similar spatial frequency.
By allowing users to guide the simplification process, our approach
can account for both low-level and high-level human perception.

2.1 Quadric Based Simplification

We selected the quadric based simplification method [Garland and
Heckbert 1997] as a base algorithm for its time efficiency and rela-
tively high quality of approximations.

Given a planen · v + d = 0 with unit normaln, and pointv, the
quadric Q is defined

Q = (A,b,c) = (nnT,dn,d2) (1)

Using this construction, we can calculateQ(v), the squared
distance of the pointv to the plane, as follows:

Q(v) = vTAv+2bTv+ c (2)

The error at a vertex is the sum of squared distances from a vertex
v to a set of planes, and can be written as

∑
i

Qi(v) = (∑
i

Qi)(v) (3)

During initialization, each vertex is assigned a quadric which is the
sum of thefundamental quadrics, formed by the unit normal and
offset of its incident faces. After initialization, for each candidate
edge contraction(vi,v j)→ v, the optimal positionv and the cost
of this contraction are computed by

v =−(Ai +A j)−1(bi +b j) (4)

Q(v) = Qi(v)+Q j(v) = (Qi +Q j)(v) (5)

Once this edge is contracted, the new vertexv accumulates the
planes associated with the edge end points byQv = Qi +Q j.

3 Guiding Simplification

The quality of the approximations produced by edge contraction al-
gorithms is fundamentally dependent on the order of contractions
and the repositioning of vertices following contraction. The key to
our approach is to guide simplification by manipulating the quadric
associated with each vertex. By manipulating quadrics, we can
implicitly re-order the edge contraction sequence and control the
selection of optimal positions, producing vertex trees of varying
structures. Specifically, we propose two fundamental mechanisms:
adaptive weighting of quadrics and additional constraint quadrics.
In this section, we assume that the weights and constraint quadrics
are assigned at initialization. In Section 4.1, we will relax this re-
striction.

3.1 Adaptive Weighting of Quadrics

We can adaptively simplify a model by controlling the order of con-
tractions selected by the underlying algorithm. Since edge contrac-
tions are selected in increasing order of cost, and since this cost
is computed byQ(v), we can manipulate their order by adaptively
weighting quadrics, multiplying the quadric of each vertex by some
scalar factor. Conceptually, we assign a weight for each input ver-
tex vi, that isQi← wiQi, at the initialization step.

During simplification, the areas with heavy weights have higher
contraction costs. Therefore, the edge contractions in those areas
are delayed and the regions maintain higher levels of detail. As an
example, users can apply heavy weights around eyes and lips in a
face model, which is indicated in red paint (Figure 1). The eyes
and lips show a higher level of detail than before.

Weighted quadrics also change the optimal position. In weighted
quadrics, the optimal position is chosen to minimize the weighted
sum of squared distances: it is biased towards planes with heavier
weights. This is a desirable property, since heavily weighted ver-
tices, which the user has designated as important features, will be
more likely to preserve their positions.

It is left to the user to select appropriate weights. However,
we usew log|V | for the actual weight, which scales the user-given
weight w by the log of the number of vertices|V | in the original
model. In order to get similar results of a feature from two different
scales of models, we need a roughly similar ratio of triangles in pro-
portion to the size of the models (or the vertex tree). Since errors are
accumulated exponentially, the log|V | term is used to compensate
for the different scales.

3.2 Constraint Quadrics

Applying heavy weights is very useful for preserving features, but it
is not always sufficiently effective, since heavily weighted regions
preserve features by leaving more polygons in those areas. How-
ever, we can preserve features without using too many polygons in
many cases. To do this, we extend the boundary constraints of the
quadric simplification algorithm.

In the original quadric simplification algorithm, each vertex is
assigned ageometry quadric derived from the geometry of its inci-
dent faces. Optionally, it can add boundary constraints to preserve
the boundary of models. In fact, we can create virtual quadrics from
arbitrary planes to impose geometric constraints by simply adding



Figure 2: (Left) Contour constraints are applied along a feature in-
dicated in a highlighted path. (Right) Contour constraints preserve
the feature in the approximation.

them to the appropriate vertices. We call those additional quadrics
constraint quadrics.

Simple addition of the constraint quadric of a virtual plane will
generally (1) increase the contraction cost, and (2) bias the optimal
position towards the plane. In order to avoid unnecessary increase
of cost, we separate constraint quadrics from the geometric quadrics
and add them only when we compute the optimal positions. Note
that the change of optimal positions still increases contraction costs
(Equation 5).

We propose three types of constraint: contour, plane, and point
constraints. These constraints are scaled both by the user-given im-
portance of the regions and by the area of faces surrounding the
regions where constraint quadrics are applied.

Contour Constraint A contour constraint can be applied to fea-
ture edges or color or texture discontinuity edges that the user
wishes to preserve. The contour constraint is very similar to the
boundary or discontinuity constraints suggested by the authors of
the originalQSlim method [Garland and Heckbert 1997].

For each edge in the selected contour, we generate two planes
running through the edge and perpendicular to each other, then add
the quadrics of these planes to the endpoints of the edge. Any pair
of perpendicular planes running through the edge produce the same
result. In our implementation, we simply pick a face incident to the
feature edge as a first plane and its perpendicular plane as the other
plane. Since the contour constraints measure the squared distance
from the edge, those constraint quadrics will pull the optimal posi-
tion onto the contour edges. Consequently, it preserves the shape of
contours. An example of a contour constraint is shown in Figure 2.

Plane Constraint A plane constraint is designed to be applied
to areas that the user wants to preserve as flat regions. For example,
suppose we have a model of a cow on the ground. We can apply
plane constraints on the feet of the cow so that the feet will remain
in contact with the floor.

When the user selects a set of vertices, our system computes a
least squares best fit plane to this set, then adds the quadric of the
plane to the selected vertices. Note that usually the planes of plane
constraints are more or less parallel to the surface, while those of
contour constraints are perpendicular to the surface. The effect of
this quadric is to pull the vertices’ positions onto the plane. This
helps the user keep the selected area flat, or can be used to remove
noise in flat regions.

Point Constraint The quadric based simplification algorithm
is based on the squared distance fromplanes. But quadrics can be
directly used to measure the squared distance topoints as well. For
pointsp andv, the squared distance between them is

‖v−p‖2 = vTv+2(−pTv)+pTp (6)

Now we define a quadric for a pointp
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Figure 3: Illustration of (left) constraint quadric and (right) repre-
sentative weight propagation. User input is given along the current
cut. (Note that the dashed part does not exist at the cut.)

Q = (A,b,c) = (I,−p,pTp) (7)

whereI is the 3x3 identity matrix. Together with Equations (2) and
(6), the distance from a pointv to p is simplyQ(v), which can be
treated in the same way as the ordinary plane quadrics. In fact, point
constraints are equivalent to placing three plane constraints through
the point, where the planes are parallel to the coordinate planes. We
can apply point constraints on vertices that are meant to maintain
their positions (Figure 5).

4 Interactive Control

Our goal in interface design is to provide user friendly input meth-
ods and intuitive ways to get feedback. In our system, users can
guide the simplification process at any time. This user guidance af-
fects the structure of vertex trees of which approximations might be
better. If a user refines an approximation, gives some guidance, and
re-simplifies it again, then the new approximation will usually have
a different vertex tree structure.

Figure 4 shows an illustration of a user interaction. A user sim-
plifies and refines a model back and forth as in(a) and (b). At
some point, he re-weights parts of the current approximation(c),
then backtracks and re-simplifies for improved eyes(d). To improve
the teeth, the user refines the dragon and imposes point constraints
on the teeth(e). Finally, we get a much improved approximation
(f). Users directly paint over the surface with varying parameters to
adaptively weight quadrics of each area. Constraints are specified
by direct selection of vertices and edges.

4.1 Propagation of Weights and Constraints

In the previous section, we assumed that the weights and constraint
quadrics are applied during the initialization phase, that is, at the
original vertices. However, we want to let users freely interact at
any level (cut) during the simplification or refinement process, and
the user’s guidance affect both the direction of simplification and
refinement. This is important since users may need to guide the
process several times depending on the feedback of their inputs.

The user’s interaction with an input model only changes the
quadrics of those vertices which exist at that time (or equivalently
lie on the current cut in the vertex tree). If we directly multiply
geometric quadrics by weights and add constraint quadrics upon
each user input, then we would not be able to separate quadrics cor-
rectly into two children when we split a node. Our key approach
to this problem is to maintain weighted (geometric) quadrics sepa-
rated from constraint quadrics in each node of the vertex hierarchy
tree. In fact, we have already seen a reason to separate constraint
quadrics in each node: we can compute costs disregarding con-
straint quadrics. Constraint quadrics are added only when comput-
ing the optimal positions of contractions. However, we need new
rules for propagation of quadrics.



The first rule is for the constraint quadrics. We only propagate
half of each parent’s constraint quadric to its children when we re-
fine a node. On the other hand, we just add up children’s constraint
quadrics for their parent’s constraint quadric when we simplify a
node. This ensures that the quadric of each node is the sum of
quadrics of leaf nodes in its subtree. This also guarantees the same
result after we repeatedly simplify and refine without interaction
during a series of simplification and refinement steps(Figure 3 left).

Propagation of weighted quadrics is somewhat tricky. If a user
weights an intermediate node other than leaf nodes, then the quadric
of a parent node might not be the sum of the quadrics of its two
children. Although we can avoid this by multiplying the quadrics
of all its descendent by the given weight everytime, we defer this
until edge splits occur, since it is expensive. However, there is a
scalar factorα such thatQ = α (Q1 +Q2), whereQ,Q1,Q2 are the
quadrics of a parent and its two children. Therefore, when we split
the nodeQ, we first computeα by comparing the quadrics, then set
Q1← α Q1, Q2← α Q2 for the quadrics of its children.

We still need a mechanism to visualize the weights for current
vertices. This visualization is important since the user should know
how a model is weighted from area to area. For this, we introduce
a representative weight, a scalar value for each node to visualize
an approximate weight for the node. In fact, exact representative
weight in a node is generally undefined unless the node is directly
weighted by a user. So we define a reasonable propagation rule
as follows (Figure 3 right): (1) for an edge contraction, the weight
of a parent node is the average of its children’s, (2) for an edge
split, the weights of two children are the same as the parent’s. This
rule is reasonable, since a parent node should represent both its two
children, and a child inherits its parent’s weight.

5 Results

Our implementation is built on the publicly availableQSlim soft-
ware [Garland and Heckbert 1997].QSlim can optionally build
the vertex tree during simplification to keep track of the quadric of
each vertex, though it is not a required part of the core algorithm.
For each edge contraction,QSlim adds a node in the vertex tree, for
which the quadric is the sum of the quadrics of its two children. For
vertex splits, the process is the reverse of edge contractions.

In order to add our new features, each node in the vertex tree
should have two more components: a representative weight and a
constraint quadric. For each edge contraction, geometric quadrics
are treated the same way except they are weighted. The represen-
tative weights and the constraint quadrics follow the propagation
rules outlined in the previous section. Constraint quadrics should
be added when optimal positions are computed.

Our experiements do not show any noticeable difference in the
simplification processing time between the original and our user-
guided approach. Furthermore, the user interaction time of our sys-
tem is also very short. It took only 2–3 minutes of user-guidance
time to produce the approximations presented in this work.

In Figure 1, we simplified a face model with both fully automatic
QSlim (left) and our program (right) to 650 triangles. We applied
heavy weights around eyes and lips, shown as red paint in the small
figure of the right side. The fully automatic method removes de-
tails of the eyes and lips while our system preserves much of them.
The higher definition of the eyes and lips delivers a much clearer
impression of the face.

The left picture in Figure 5 is the original dragon model with
50,000 faces. The middle approximation is generated without user
guidance, while we applied heavy weights around the eyes, and
added point constraints on the peak of the tooth in the right approx-
imation. The right model preserves the scary teeth and eyes, while
the left model loses most of these features. Furthermore, as shown
in the thumbnails, our system does not degrade the overall shape.

Figure 6 visualizes error measured by the closest Euclidean dis-
tances from the original to the approximations. While the average
errors are roughly the same, the user-guided approximations shows
less error around perceptually important regions such as eyes with
sacrifice of other parts like chin.

6 Conclusion and Future Work

We have proposed an interactive simplification system with user
guidance. In our system, users can interact directly with the under-
lying quadric-based simplification algorithm to create an improved
version of approximations with very little effort. Using our sys-
tem, users can preserve feature areas or semantic meanings of input
models and can produce significantly better results than the fully
automatic method at low levels of detail. Since our new features
can be put into the original algorithm without significant changes
or overhead, our system still provides the advantages of the under-
lying algorithm, such as time efficiency.

While our experimental results show that our system works well,
there are a number of areas to be improved further. One important
weakness of our system is that the user may need to repeat the sim-
plification and refinement process changing weights several times
before he is satisfied with the approximation. Our current system
requires users to directly specify weights. We suggest two future
directions to improve this weakness. The first one is to consider a
sophisticated error metric that can quantify perceptual importance.
The second direction is to incorporate simplification with learning
algorithms: a small set of user guidance trains the algorithm, then
the algorithm automatically guides the rest of the process for simi-
lar kinds of models which are not from the example set.
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Figure 4: An illustration of user’s interaction. The number of triangles is indicated in each figure.

Figure 5: (Left) A dragon model of 50,000 faces. (Middle) 1,500 faces fully automatically simplified byQSlim, and (Right) simplified by
our system. Note that our dragon still has scary teeth and threatening eyes.
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Figure 6: Visualization of relative error distribution of approximations fromQSlim (left) and our system (right). While the left figure shows
roughly uniform error distribution over the surface, our result indicates less error for perceptually important areas.


